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Better together: integrating multivariate with univariate methods, and MEG with
EEG to study language comprehension
Lin Wanga,b and Gina R. Kuperberga,b

aDepartment of Psychiatry and the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical
School, Boston, MA, USA; bDepartment of Psychology, Tufts University, Medford, MA, USA

ABSTRACT
We used MEG and EEG to examine the effects of Plausibility (anomalous vs. plausible) and Animacy
(animate vs. inanimate) on activity to incoming words during language comprehension. We
conducted univariate event-related and multivariate spatial similarity analyses on both datasets.
The univariate and multivariate results converged in their time course and sensitivity to
Plausibility. However, only the spatial similarity analyses detected effects of Animacy. The MEG
and EEG findings largely converged between 300–500 ms, but diverged in their univariate and
multivariate responses to anomalies between 600–1000 ms. We interpret the full set of results
within a predictive coding framework. In addition to the theoretical significance, we discuss the
methodological implications of the convergence and divergence between the univariate and
multivariate results, as well as between the MEG and EEG results. We argue that a deeper
understanding of language processing can be achieved by integrating different analysis
approaches and techniques.
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General introduction

To comprehend language, we must transform a continu-
ous stream of sounds or letters into meaning. How do
we accomplish this feat? How and when does the
brain encode the semantic features of each incoming
word during real-time comprehension? Does the
process of retrieving these semantic features always
produce an overall increase in brain activity? The exqui-
site temporal resolution of electroencephalography
(EEG) and magnetoencephalography (MEG) make these
neuroimaging techniques ideally suited for addressing
these questions. As information encoded within each
new linguistic input is passed up and down the cortical
hierarchy, large numbers of spatially aligned pyramidal
neurons produce electric dipoles, generating electric
and magnetic fields (Buzsáki et al., 2012) that can be
detected at the head surface using EEG and MEG. At
each recording channel, the measured voltage or mag-
netic field reflects the sum of neural activity generated
by multiple underlying dipole sources, scaled by a
weighting factor that, in EEG, is influenced by the con-
ductivities of head tissue, particularly the skull and
scalp (Nunez, 1990), and, in MEG, is influenced by the
folding pattern of the cortex (Hämäläinen et al., 1993).

In a typical EEG/MEG experiment, we measure activity
at multiple recording channels at each time point follow-
ing the onset of an “event” of interest, such as a critical
word in a sentence. Our goal is to understand how our
experimental variables influence this recorded activity
so that we can make inferences about when and how
the brain extracts information from the linguistic input
as it unfolds in real time. To achieve this goal, we can
take one of two different types of analytic approaches.

The first is to carry out a classic event-related analysis.
This approach has a long history in psycholinguistic
research, dating from the discovery of the N400 in
1980 (Kutas & Hillyard, 1980). The basic assumption of
an event-related analysis is that an experimental variable
of interest modulates the amplitude of activity measured
at individual adjacent channels. This assumption is natu-
rally incorporated in a univariate General Linear Model,
which asks whether and when a particular variable
explains variance in the amplitude of a dependent vari-
able across multiple items (Baayen et al., 2008; Clark,
1973). If the experimental variable is categorical, then
the intercept term in this type of model simply corre-
sponds to the average amplitude of the response
across all trials in the reference condition, and the
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model’s beta weight corresponds to the mean difference
between experimental conditions (Smith & Kutas, 2015).
Indeed, the classic way of carrying out an event-related
analysis in EEG and MEG is simply to average the
measured activity at each recording channel, across all
trials within each experimental condition at each time
point following the onset of the critical event (Luck,
2014a). This yields a time course of activity at each
channel – a sequence of “waveforms” that in EEG are
referred to as event-related potentials (ERPs), and in
MEG are referred to as event-related fields (ERFs).
These event-related responses can be described in
terms of their amplitude, latency, duration, scalp topo-
graphy, and, in the case of EEG, their polarity (whether
the voltage is negative-going or positive-going). If we
believe that a particular event-related response is
reliably modulated by a particular type of psychological
event, then we refer to it as an event-related component
(Kappenman & Luck, 2012).

At a neurophysiological level, the interpretation of an
event-related component is relatively straightforward:
its amplitude (often averaged across a particular time
window and adjacent channels) is taken to reflect the
strength of time-locked (and phase-locked) neural
activity produced by the underlying dipole source(s),
and any difference in amplitude that can be explained
by our experimental variable is taken to reflect differ-
ences in the strength of this underlying neural activity.
At a cognitive level, this difference is usually interpreted
as reflecting the effect of the experimental variable on a
neurocognitive “process” (Kappenman & Luck, 2012).

This classic event-related analysis approach has
yielded a large literature that has characterised a
number of different event-related components, which
have each been linked to different aspects of language
processing (see Swaab et al., 2012 and Dikker et al.,
2020 for reviews of language-related ERP and MEG com-
ponents, respectively). For example, during sentence
comprehension, N400 event-related component1 is
usually taken to reflect the ease of “retrieving” or “acces-
sing” the semantic features of incoming words (Hagoort,
2013; Lau et al., 2008; Van Berkum, 2009).

The second approach that we can take to analyse
EEG/MEG data has a much shorter history in neurophy-
siology and psycholinguistics. Instead of focusing on
the amplitude of activity measured at individual adjacent
recording channels, this approach aims to characterise
whole patterns of activity, measured across multiple
recording channels. This multivariate analysis approach
was first developed in fMRI to describe patterns of
activity observed across multiple voxels within neuroa-
natomical regions of interest (Haxby et al., 2001). It
was argued that, in contrast to univariate methods,

which focused on the magnitude of activity at individual
voxels, these spatial patterns better reflected the “rep-
resentational information” encoded within these
regions (Kriegeskorte & Bandettini, 2007).

Initially, it was assumed that multivariate methods
were unsuited for analysing EEG/MEG data at the head
surface. However, it has since become clear that
unique spatial patterns produced within underlying neu-
roanatomical sources can give rise to unique spatial pat-
terns of electrical and magnetic activity that can be
detected either across the full set of recording channels
(e.g. Cichy et al., 2014; Stokes et al., 2015) or across
subsets of channels (e.g. Karimi-Rouzbahani et al.,
2021) at the head surface.

In a multivariate analysis, the basic assumption is that
the experimental variable of interest influences the geo-
metric relationship amongst these spatial patterns. For
example, one type of multivariate approach – spatial
similarity analysis, otherwise known as representational
similarity analysis asks whether and when the simi-
larity/dissimilarity amongst items, with respect to the
experimental variable, can explain the similarity/dissim-
ilarity amongst the spatial patterns produced by these
items (Kriegeskorte et al., 2008; Nili et al., 2014). In a
typical representational similarity analysis stream, this
is examined by constructing a “Model” dissimilarity
matrix and correlating it with a “Neural” dissimilarity
matrix at each time point following event onset, yielding
a time series of r values (e.g. Cichy et al., 2014).

In contrast to event-related components, there is no
direct neurophysiological interpretation of these multi-
variate time series. They simply tell us whether and
when the spatial patterns of neural activity produced
by the stimuli can be discriminated by the experimental
variable of interest. From a cognitive perspective, this is
usually taken to reflect whether and when “represen-
tational information” linked to this variable is neurally
decodable.

The present study

To sum up, there is a long history of using EEG and MEG
with event-related analyses to study the neural basis of
online language comprehension. The combination of
EEG/MEG with spatial similarity analysis and other multi-
variate methods is more recent. Because these newer
multivariate approaches come from a different tradition
and use different statistical methods, it is sometimes
assumed that they detect neural activity that is function-
ally distinct and separable from that indexed by classic
EEG/MEG components. However, this assumption is
not always valid, and, despite close methodological
links between the two approaches, few psycholinguistic
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studies have systematically compared the results of
these two types of analyses in the same datasets. In
addition, there has been little discussion in the psycho-
linguistic literature about how to synthesise the results
of event-related and spatial similarity analyses to
inform theory. Finally, few studies have directly com-
pared univariate or multivariate findings between MEG
and EEG. In this investigation, we aimed to close these
gaps. We addressed three sets of questions.

Question 1: when and how does the brain encode
the Animacy of incoming words during online
language comprehension?
Our first goal was to use multivariate and univariate
methods with MEG/EEG to address a theoretical ques-
tion: When and how does the brain encode the
animacy of incoming words during online language
comprehension, and how is this influenced by the
prior context?

A large literature using event-related approaches has
established that, between 300–500ms, incoming words
whose semantic features match these that were pre-acti-
vated by the prior context produce a smaller N400
event-related component than words whose semantic
features fail to match these predictions (ERP: Kuperberg
et al., 2020; Kutas & Hillyard, 1980; Nieuwland et al., 2020;
MEG: Halgren et al., 2002; Helenius et al., 1998; Ihara
et al., 2007; Maess et al., 2006). For example, plausible
nouns whose animacy-based semantic features match
those that are pre-activated by a prior verb (Szewczyk
& Schriefers, 2013; Wang et al., 2020) produce a
smaller N400 than anomalous nouns whose features
fail to match these verb-based predictions (Kuperberg
et al., 2020; Paczynski & Kuperberg, 2011, 2012; Szewc-
zyk & Schriefers, 2013).

In line with the idea that event-related components
index “processing”, the smaller N400 response to
expected (versus unexpected) words is usually taken to
reflect the ease of semantic “retrieval” (Hagoort, 2013;
Van Berkum, 2009) or lexico-semantic “access” (Lau
et al., 2008). However, another way of understanding
the N400 is as indexing the amount of new information
that is encoded within the bottom-up input, i.e. the
amount of information that was not already predicted
by the prior context (Kuperberg, 2016). This is the
premise of predictive coding – – a general computational
theory of brain function that posits that unpredicted
information encoded within the bottom-up input is
detected by local “error units”, which produce “predic-
tion error” (Friston, 2005; Mumford, 1992; Rao &
Ballard, 1999), and an event-related response (Friston,
2005), see General Discussion for further elaboration. Cri-
tically, according to predictive coding, even if new

bottom-up information matches prior predictions,
failing to activate error units and produce a large univari-
ate response, it is still encoded within separate sets of
“state units”. As such, it should still be possible to
detect this expected information within the critical
300–500ms time window in which the bottom-up
input first makes contact with semantic memory.

To test this theory, we measured MEG and EEG as par-
ticipants read three-sentence discourse scenarios. We
varied both the Plausibility and the Animacy of a critical
word in the final sentence, such that it was either
animate or inanimate, and either plausible (matching
the animacy constraints of the prior verb) or anomalous
(mismatching these animacy constraints). In addition to
carrying out event-related univariate analyses, we
carried out multivariate spatial similarity analyses on
the same datasets. Previous fMRI studies have shown
that multivariate methods can discriminate animate
and inanimate visual objects (Devereux et al., 2013; Krie-
geskorte et al., 2008; Proklova et al., 2016; Sha et al.,
2015) and words (Devereux et al., 2013). In addition, pre-
vious EEG/MEG studies have used representational simi-
larity analysis to show that animacy-based
discriminations of visual objects occur rapidly (Carlson
et al., 2013; Cichy et al., 2014; Cichy & Pantazis, 2017;
Khaligh-Razavi et al., 2018). However, no previous
study has used these methods to ask whether and
when the brain distinguishes between animate and
inanimate incoming words during language comprehen-
sion. Based on principles of predictive coding, we pre-
dicted that the spatial similarity analysis would detect
an effect of Animacy within the same 300–500 ms time
window in which the event-related analysis detected
an effect of Plausibility on the N400, and that this
effect would be detected regardless of whether the
incoming words matched or mismatched the animacy-
based constraint of the prior verb.

In addition to asking when the animacy-based fea-
tures of incoming words were encoded, we were also
interested in how these features were encoded. A long
line of Cognitive Science research has established that
the semantic features of animate items are more
similar to one another than the semantic features of
inanimate items (Garrard et al., 2001; McRae et al.,
1997; Randall et al., 2004; Zannino et al., 2006). It has
been proposed that these inherent differences in seman-
tic similarity can account for the brain’s sensitivity to
animacy-based categorical structure (Devlin et al.,
1998; Gonnerman et al., 1997; Moss et al., 1998; Taylor
et al., 2011; Tyler & Moss, 2001). On this account, the
similarity between the spatial patterns produced by
animate and inanimate nouns should mirror this internal
similarity structure. We therefore hypothesised that,
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between 300–500 ms, any spatial similarity effect of
Animacy would be driven by a greater similarity
amongst the spatial patterns produced by animate
than inanimate nouns.

To test these hypotheses, we extracted the spatial
patterns produced by each critical noun at each time
point following its onset and calculated the spatial simi-
larity between these patterns across all pairs of nouns.
We then averaged these pairwise spatial similarity
values (r values) within each of the four experimental
conditions, giving rise to four spatial similarity time
series. This allowed us to test our hypothesis regarding
the directionality of the spatial similarity effect (animate
> inanimate), as well as to directly compare its timing
with the event-related effect of Plausibility.

Question 2: how do spatial similarity and event-
related measures converge and diverge during
language comprehension?
Our second goal was more methodological in nature. As
discussed earlier, event-related and spatial similarity
analyses each aim to characterise different aspects of
the underlying neural signal – the strength of the
dipoles versus the spatial patterns they produce. In prin-
ciple, these two measures should be independent of
each other. However, both analysis methods face the
challenge of distinguishing very small signals from
ongoing activity that is not time-locked to stimulus
onset, and independent of the experimental variable(s)
of interest, i.e. “noise”. Therefore, in practice, estimates
of spatial similarity are likely to covary with the ampli-
tude of evoked responses. This covariation between uni-
variate and multivariate responses has been discussed in
the fMRI literature (e.g. Haxby et al., 2001; Jimura & Pol-
drack, 2012; Walther et al., 2016), and to some degree, in
the EEG/MEG literature (Guggenmos et al., 2018).
However, the degree to which multivariate methods
are sensitive to the classic event-related components
and effects that are typically produced during language
comprehension is unclear.

One reason why we know so little about how event-
related and multivariate measures converge and diver-
gence is that these methodologies use quite different
analysis streams and methods of visualisation. As dis-
cussed above, in a typical event-related analysis, we
average activity across items within each condition at
each time point, with the goal of determining when
one condition produces more or less activity than
another (Kappenman & Luck, 2012). In contrast, in a
typical representational similarity analysis, we examine
correlations between a Model dissimilarity matrix and
a Neural dissimilarity matrix at each time point, with
the goal of determining when the conditions can be

discriminated (cf. Kriegeskorte et al., 2008; Nili et al.,
2014). Therefore, directly comparing the results of the
two methods is challenging.

The experimental design and the spatial similarity
analysis methods that we employed in the current
study allowed us to overcome this challenge. Our strat-
egy of constructing separate spatial similarity time
series for each condition allowed us to directly
compare the shape and time course of these time
series with the event-related waveforms produced by
each condition. Moreover, by orthogonally manipulating
Animacy and Plausibility in the same set of linguistic
stimuli, and examining the effect of both variables on
the same univariate and multivariate measures, we
were able to determine when and how the univariate
and multivariate results converged and diverged. We
hypothesised that the event-related analyses would fail
to detect any spatial similarity effects of Animacy that
were detected by the spatial similarity analyses, but
that the spatial similarity analyses would capture all
the effects of Plausibility that were detected by the
event-related analyses.

Question 3: how do the results of MEG and EEG
converge and diverge during language
comprehension?
Our third goal was to directly compare the results (both
univariate and multivariate) of data that were collected
using two different techniques – MEG and EEG.

Because MEG and EEG both index postsynaptic
activity that is produced by pyramidal neurons, they
are sensitive to many of the same event-related com-
ponents, including the N400. There is also evidence
that MEG and EEG are sensitive to some of the same
multivariate effects (Cichy & Pantazis, 2017; Wang
et al., 2020). However, there are also important differ-
ences between the two techniques. Unlike the magnetic
field, the electric field is smeared at the head surface
(Geisler & Gerstein, 1961; Grynszpan & Geselowitz,
1973). In addition, MEG and EEG differ in their sensi-
tivities to underlying dipole sources with different orien-
tations (Cuffin & Cohen, 1979; Hämäläinen et al., 1993).
Therefore, the two types of techniques may not always
detect the same neurocognitive mechanisms. For
example, MEG is less sensitive than EEG to the domain-
general P300 event-related component (Siedenberg
et al., 1996).

In the present study, we were particularly interested
in comparing the MEG and EEG responses to anomalous
inputs in a later time window between 600–1000 ms.
When a linguistic anomaly cannot initially be incorpor-
ated into a high-level interpretation, the disruption of
comprehension is thought to trigger multiple processes,
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including reprocessing the bottom-up input, reactivat-
ing prior top-down predictions, and tracking conflict
between these different sources of information to
verify that the disruption stemmed from an external
(rather than an internal) error (Kuperberg et al., under
review).

In EEG, the prolonged late error-based response
manifests as a large posteriorly distributed late positivity
ERP effect, known as the P600 (Brothers et al., 2020;
Brothers et al., 2022; Kuperberg, 2007; Kuperberg et al.,
2003; Kuperberg et al., 2020; Kuperberg et al., under
review; van de Meerendonk et al., 2009). The P600 ERP
component shares several functional properties with
the P300 (Coulson et al., 1998; Osterhout et al., 2012; Sas-
senhagen et al., 2014; Sassenhagen & Fiebach, 2019),
and it may play a particularly important role in tracking
the source of linguistic errors (Brothers et al., 2022;
Kuperberg et al., under review). However, previous
MEG studies have not reported an analogous effect on
anomalies in this late time window. This raises the possi-
bility that, due to their differential sensitivity to distinct
neuroanatomical sources, MEG and EEG may also be
differentially sensitive to distinct aspects of the pro-
longed error-based response between 600–1000 ms.

To date, few psycholinguistic studies have directly
compared the results of EEG and MEG, using the same
stimuli and tasks. We therefore carried out the same
experiment using MEG (reported in Study 1) and EEG
(reported in Study 2). This allowed us to qualitatively
compare both the event-related and spatial similarity
results across the two techniques. We hypothesised
that the MEG and EEG results would largely converge
within the 300–500 ms time window, but that they
would show differences in their sensitivities to the
activity produced by semantic anomalies in the later
600–1000 ms time window.

Study 1: MEG

Introduction

We recorded MEG while participants read multiple
three-sentence scenarios. We orthogonally manipulated
the Plausibility and the Animacy of critical nouns in the
final sentence, such that they either matched or violated
the animacy-based constraints of the preceding verb.
This 2 × 2 design gave rise to four experimental con-
ditions in which the critical nouns were: (1) plausible
and animate (e.g. “… greeted the guests…”), (2) plaus-
ible and inanimate (e.g. “… clamped the wires…”), (3)
anomalous and animate (e.g. “… clamped the *guests
…”), and (4) anomalous and inanimate (e.g. “…
greeted the *wires…”).

We began by analysing the data using a traditional
event-related analysis stream, averaging across trials
within each condition at each time point after critical
word onset. To test our hypotheses, we contrasted the
amplitude of the ERFs across the four conditions
within two time windows of interest: 300–500 ms (to
capture the N400) and 600–1000 ms (to capture post-
N400 activity). Based on previous MEG studies, we
expected that between 300–500 ms, the amplitude of
the N400 over left temporal sensors would be larger to
the semantically anomalous than the plausible nouns
(Halgren et al., 2002; Helenius et al., 1998; Ihara et al.,
2007; Maess et al., 2006). Based on the prior ERP litera-
ture (Brothers et al., 2020; Kuperberg, 2007; Kuperberg
et al., 2020; van de Meerendonk et al., 2009; Van
Petten & Luka, 2012), we also considered the possibility
that we would additionally see an effect of Plausibility
(anomalous > plausible) in the later 600–1000 ms time
window. However, because most previous MEG studies
have not reported findings past the N400 time
window, the size and topography of any late effect of
Plausibility that we might see on these late ERFs were
unclear.

We then carried out a spatial similarity analysis on the
same MEG dataset. We aimed to address two questions.
The first was whether this analysis would pick up on the
same underlying neural activity detected by the event-
related analysis. If so, then the timing of the rise and
fall of the spatial similarity r values should track that of
both early and late event-related components. In
addition, this analysis should reveal similar effects of
Plausibility (anomalous > plausible) as the event-related
analysis within both the N400 (300–500 ms) and post-
N400 (600–1000 ms) time windows.

Our second question was whether and when the
spatial similarity analysis would detect additional
effects of the Animacy on the critical nouns that were
not detected by the event-related analysis. As noted in
the General Introduction, previous MEG studies have
shown that multivariate methods can discriminate
between animate and inanimate visual objects (Carlson
et al., 2013; Cichy et al., 2014; Cichy & Pantazis, 2017;
Khaligh-Razavi et al., 2018). However, previous studies
have not asked whether and when these methods are
able to discriminate the animacy of linguistic inputs
during sentence-level comprehension, or what drives
the discrimination in the spatial patterns produced by
the animate versus inanimate concepts. To address
these questions, we averaged the pairwise spatial simi-
larity values (r values) within each experimental con-
dition at each time point following critical word onset,
and constructed four spatial similarity time series. This
enabled us to determine both the timing and
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directionality of any spatial similarity effects, as well as to
directly compare the spatial similarity time series with
the event-related time series.

Methods

Participants
The MEG study was carried out at the Martinos Centre at
Massachusetts General Hospital. We report data from 32
participants (16 females, mean age: 23.4; range: 18–35).
Thirty-three participants originally took part in the
experiment, but the data of one participant was
excluded because of technical problems. Written
consent was obtained from all participants following
the guidelines of the Mass. General Brigham Institutional
Review Board (IRB). All participants were right-handed
and had normal or corrected-to-normal vision. All were
native speakers of English, with no additional language
exposure before the age of five. Participants were not
taking psychoactive medication and were screened to
exclude the presence of psychiatric and neurological
disorders.

Experimental design
Each participant read 200 three-sentence discourse
scenarios. The first two sentences set up a discourse
context, and the third sentence had a fixed structure:
an adjunct phrase (ranging between 1–4 words), a
subject, verb, determiner, direct object noun (the “criti-
cal noun”), followed by three additional words. In half
the scenarios, the verb in the third sentence constrained
for an animate direct object noun (e.g. “… greeted the
…”), and in the other half, the verb constrained for an
inanimate direct object noun (e.g. “… clamped the
…”). In half the scenarios, the critical noun matched
the verb’s animacy constraints (its selectional restric-
tions), rendering the scenarios plausible, and in the
other half, it violated these constraints, rendering the
scenarios anomalous. The animate nouns were slightly
longer (mean number of letters ± SD: 7.51 ± 2.14) than
the inanimate nouns (6.56 ± 2.13, t(698) = 4.56, p < 0.001,
d = 0.35). In addition, the animate nouns were slightly
less frequent (mean log frequency ± SD: 0.74 ± 0.92;
based on Brysbaert & New, 2009) than the inanimate
nouns (0.94 ± 0.82, t(698) =−3.07, p = 0.001, d =−0.23).
A detailed description of how the stimuli were con-
structed and normed can be found in Wang et al.
(2020) and Kuperberg et al. (2020). As discussed there,
we also varied the lexical constraint of the prior contexts
such that, in each of the four conditions, half the critical
nouns followed high constraint contexts and half fol-
lowed low constraint contexts. However, for the
purpose of the analyses reported here, we collapsed

across contextual constraint. The scenarios were coun-
terbalanced across four lists, with approximately 50 sen-
tences of each condition within each list.

Similarity structure of the critical words
Semantic similarity between pairs of animate and
inanimate nouns. To confirm that the animate critical
nouns were semantically more similar to each other
than the inanimate nouns, we quantified the semantic
similarity between all pairs of animate nouns and all
pairs of inanimate nouns using word2vec (Mikolov
et al., 2013). Word2vec is a neural network model that
learns distributed semantic representations of words
by training it on the Google News corpus of ∼100
billion words. Each word is represented as a 300-dimen-
sional vector, and words with similar meanings are
located close to each other in this high-dimensional
space. We calculated the semantic similarity between
each pair of words by measuring the cosine distance
between their corresponding 300-dimensional word
vectors, using the Genism natural language processing
library in Python.

To test for a statistical difference in semantic similarity
between the animate and inanimate nouns pairs, we
used a permutation approach. Specifically, we calculated
the mean difference in similarity between the two
groups of nouns and used this as our test statistic. We
then randomly reassigned the similarity values to
either the animate or inanimate group and recalculated
the mean difference in similarity between the two
groups. We repeated this process 1000 times to create
a null distribution of mean differences. We considered
our observed test statistic to be statistically significant
if it fell within the top or bottom 2.5% of the null distri-
bution. This analysis confirmed that the semantic simi-
larity amongst pairs of animate nouns (mean ± SD:
0.13 ± 0.11) was significantly greater than amongst
pairs of inanimate nouns (mean ± SD: 0.11 ± 0.12, p =
0.001).

Similarities in word length and frequency between
pairs of animate and inanimate nouns. We also quan-
tified the similarity in length (number of letters) and log
frequency (Brysbaert & New, 2009) amongst the animate
and inanimate nouns by computing the absolute differ-
ence in these values for each pair of items. For each of
these variables, we took the difference between the
mean similarity value (i.e. the absolute difference
value) in each group of nouns as our test statistic and
used a permutation test (1000 permutations) to deter-
mine if there were significant differences between the
two groups. We found that the pairs of animate nouns
were slightly less similar to one another (i.e. showed
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greater differences) than the pairs of inanimate nouns,
both in word length (animate: 2.41 ± 1.84, inanimate:
2.34 ± 1.91, p = 0.001) and frequency (animate: 1.05 ±
0.78, inanimate: 0.91 ± 0.71, p = 0.001).

Experimental procedure
The discourse scenarios were presented over eight
blocks, with short breaks in between each block.
Before the experimental session, a practice session was
conducted to familiarise participants with the stimulus
presentation and tasks.

In each scenario, the first two sentences were each
presented as a whole for 3900 ms (100 ms interstimulus
interval, ISI). Then, after a white fixation (“++++”) for
550 ms (100 ms ISI), the third sentence appeared word-
by-word, with each word presented for 450 ms
(100 ms ISI). Following the sentence-final word, a pink
question-mark (“?”) appeared for 1400 ms (100 ms ISI),
which cued participants to press one of two buttons
with their left hand to indicate whether or not the scen-
ario made sense. In addition, following a proportion of
trials (24/200), which were semi-randomly distributed
across blocks, participants responded to a yes/no com-
prehension question that appeared on the screen for
1900ms (100 ms ISI). After each trial, a blank screen
appeared with a variable duration, ranging from 100 to
500 ms, followed by a green fixation (“++++”) for
900 ms (100 ms ISI) during which participants were
encouraged to blink.

MEG data acquisition and preprocessing
MEG data were acquired with a Neuromag VectorView
system (Elekta-Neuromag Oy, Finland) with 102 triplets
of sensors. Each triplet was comprised of two orthogonal
planar gradiometers and one magnetometer. EEG data
were acquired at the same time as the MEG data (see
Study 2). MEG signals were digitised at 1000 Hz, with
an online bandpass filter of 0.03 - 300 Hz. Vertical and
horizontal electrooculography (EOG) data, as well as
electrocardiogram (ECG) data were collected with
bipolar recordings. Impedances were kept at less than
30kΩ.

The data were preprocessed using the Minimum
Norms Estimates (MNE) software package in Python
(Gramfort et al., 2014). We first identified “bad” sensors
in each participant in each block, resulting in the
removal of seven (on average) out of the 306 MEG
sensors. The data of these bad MEG sensors were later
interpolated using spherical spline interpolation (Perrin
et al., 1989). Eye-movement and blink artifacts were
automatically removed (Gramfort et al., 2014), and
Signal-Space Projection (SSP) correction (Uusitalo &
Ilmoniemi, 1997) was used to correct for ECG artifacts.

After applying a bandpass filter at 0.1–30 Hz, the data
were segmented into −100–1000 ms epochs relative to
critical word onset. Epochs in which amplitudes
exceeded pre-specified cutoff thresholds (4e-10 T/m
for gradiometers and 4e-12 T for magnetometers) were
removed, leaving 40 - 42 trials (on average) in each of
the four conditions.

Event-related analysis
At each recording site, we combined the activity pro-
duced by the two gradiometer sensors by computing
their root mean square value. We carried out an event-
related analysis using Fieldtrip, an open-source Matlab
toolbox (Oostenveld et al., 2011). In each participant,
we calculated the evoked responses, relative to critical
word onset, by averaging activity across trials within
each of the four conditions at each sampling point fol-
lowing critical word onset, using a −100–0 ms baseline.

In MEG, the topographic distribution of the N400
effect at the head surface has been well characterised:
Several previous studies have shown that it is produced
primarily over left temporal sensors (e.g. Lau et al., 2013;
Wang et al., 2018; Wang et al., 2023). Therefore, to
compare the magnitude of the N400 across conditions,
we averaged activity across nine left temporal sites
(highlighted in the topographic plot in Figure 1A)
between 300–500 ms. These mean values served as the
dependent variable in a repeated-measures ANOVA,
with two within-subject variables: Plausibility (plausible,
anomalous) and Animacy (animate, inanimate).

We also carried out statistical analyses on the mean
activity between 600–1000 ms. In this time window, pre-
vious studies using ERPs have reported late effects of
Plausibility (anomalous > plausible) on a positive-going
component known as the P600. However, most previous
MEG studies have failed to examine activity within this
later time window, and so the topography of any late
MEG effect was unclear. We therefore took a mass uni-
variate statistical approach to determine whether and
where there were differences across conditions in
evoked activity within this late time window, carrying
out tests at all 102 combined gradiometer sensors. To
test for the main effects of each variable, we carried
out dependent-samples t-tests, collapsing across the
two levels of the other variable. To test for an interaction
between Plausibility and Animacy, we computed differ-
ence waveforms (inanimate minus animate) separately
for the anomalous and plausible conditions, and con-
trasted these two difference waveforms. To correct for
multiple comparisons, we used a cluster-based permu-
tation test (Maris & Oostenveld, 2007): All spatially adja-
cent data samples that exceeded a preset uncorrected
significance threshold of 5% were taken as a cluster,
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and individual t-statistics within each cluster were
summed to yield cluster-level test statistics. We built a
null distribution by randomly assigning condition
labels within each participant 1000 times, calculating

cluster-level statistics for each randomisation, and enter-
ing the largest cluster-level statistic into the null distri-
bution. We then compared the observed cluster-level
test statistics against the null distribution and took any

Figure 1. Results of the MEG event-related and spatial similarity analyses (n = 32). A. Grand-average ERF waveforms following the
onset of critical nouns at a left temporal site (MEG1512 + 1513) and a left occipital sensor site (MEG1932 + 1933). The duration of
the critical nouns (0 - 450 ms) and the subsequent word (550 - 1000 ms) are marked with gray bars on the x-axes. B. Topographic
maps showing the distributions of the effects of Plausibility (collapsed across the animate and inanimate conditions) between 300–
500 ms (left) and 600–1000 ms (right). MEG sensors that showed significant differences are indicated with white dots. C. Bar graphs
showing the amplitude of the MEG event-related fields (ERFs) in each condition, averaged between 300–500 ms at a representative
left temporal sensor (left), and between 600–1000 ms at a representative right frontal sensor (right). Error bars represent ±1 standard
error of the mean. Between 300–500 ms, the anomalous nouns produced a significantly larger N400 than the plausible nouns. The
amplitude of the N400 did not differ significantly between the animate and inanimate nouns, either in the plausible or the anomalous
condition. Between 600–1000 ms, the anomalous nouns produced slightly larger ERF than the plausible words at right frontal MEG
sensors. Again, the magnitude of this ERF did not differ significantly between the animate and inanimate nouns in either the plausible
or the anomalous condition. D. Grand-average spatial similarity time series following the onset of critical nouns in each of the four
conditions. The duration of the critical nouns (0 - 450 ms) and the subsequent word (550 - 1000 ms) are marked with gray bars on the
x-axis. E. Bar graphs showing the mean MEG spatial similarity values for each condition, averaged between 300–500 ms (left) and
between 600–1000 ms (right). Error bars represent ±1 standard error of the mean. Between 300–500 ms, the anomalous nouns pro-
duced larger spatial similarity values than the plausible nouns, mirroring the ERF findings. In addition, the animate nouns produced
significantly larger spatial similarity values than the inanimate nouns in both plausible and anomalous conditions. The same pattern
was observed between 600–1000 ms.
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clusters falling within the highest or lowest 2.5th percen-
tile to be statistically significant.

Spatial similarity analysis
We carried out a spatial similarity analysis on the prepro-
cessed MEG data using custom-written scripts. In each
participant, on each trial, and at each time point follow-
ing critical word onset, we extracted a vector that
characterised the spatial pattern of neural activity pro-
duced across all sensors at all 102 recording sites (i.e.
306 sensors in total – 204 gradiometer and 102 magnet-
ometer), and computed the similarity between the
spatial patterns produced by each pair of critical nouns
by correlating these spatial vectors (Pearson r). We
then averaged these r values across all pairs of trials
within each of the four conditions to create four
spatial similarity time series.

For statistical analyses, we averaged these spatial
similarity values across the same 300–500 ms and 600–
1000 ms time windows that were used for the event-
related analysis, and carried out repeated measures
ANOVAs with Plausibility (plausible, anomalous) and
Animacy (animate, inanimate) as within-subject vari-
ables. To visualise the data, we averaged the time
series for each condition across all participants, yielding
four grand-average spatial similarity time series.

Results

Event-related responses
Description of ERF time courses. As shown in Figure 1A,
between 100–200 ms, the critical words in all four con-
ditions produced an M170 ERF component (Tarkiainen
et al., 1999) at bilateral occipital sensors, particularly
over the left hemisphere. Between 300–500 ms, the criti-
cal words, particularly the anomalous words, produced
an N400 that peaked at 400 ms, and was maximal over
bilateral temporal sensors, particularly over the left
hemisphere. Within the later 600–1000 ms time
window, there was no clear evidence of a distinct wave-
form, although the M170 evoked by the following word
was visible at occipital sensors between 650–750 ms.

300–500ms. As shown in Figure 1 (left), the N400 ERF
was significantly larger to the anomalous than the plaus-
ible nouns (Main effect of Plausibility: F(1,31) = 44.33, p <
0.001, eta2 = 0.583). There was no evoked effect of
Animacy (F(1,31) = 2.57, p = 0.119, eta2 = 0.077), or any
interaction between Plausibility and Animacy (F(1,31) =
0.34, p = 0.854, eta2 = 0.001).2

600–1000ms.Within this later time window, the cluster-
based permutation tests showed that the anomalous

words produced a slightly larger ERF than the plausible
words at right frontal MEG sensors (cluster-based per-
mutation test: p = 0.014), although the magnitude of
this effect was small, see Figure 1B (right). No clusters
revealed a significant effect of Animacy or an interaction
between Plausibility and Animacy within this late time
window.

MEG spatial similarity results
Description of the MEG spatial similarity time series.
As shown in Figure 1D, the overall shape of the spatial
similarity time series mirrored that of the ERF time
courses: The rise and fall of the spatial similarity values
between 100–200 ms corresponded to the M170 ERF
component, and the rise and fall of the spatial similarity
values between 300–500 ms, particularly to the anoma-
lous nouns, corresponded to the N400. The rise and fall
of spatial similarity values between 650–750 ms corre-
sponded to the M170 evoked by the following word.

300–500ms. As shown in Figure 1D and E, the spatial
similarity values, averaged between 300–500 ms, were
significantly larger to the anomalous than to the plaus-
ible nouns (Main effect of Plausibility: F(1,31) = 50.06, p
< 0.001, eta2 = 0.617). In addition, both the plausible
and anomalous critical words produced spatial similarity
values that were slightly larger to the animate than to
the inanimate nouns (Main effect of Animacy: F(1,31) =
7.86, p = 0.009, eta2 = 0.202). There was no interaction
between Plausibility and Animacy (F(1,31) = 0.053, p =
0.820, eta2 = 0.002).

600–1000ms. Both the spatial similarity effects
described above continued into the 600–1000 ms
window, see Figure 1D and E. The spatial similarity
values remained larger to the anomalous than plausible
nouns (Main effect of Plausibility: F(1,31) = 16.384, p <
0.001, eta2 = 0.346), and slightly larger to the animate
than inanimate nouns, regardless of Plausibility (Main
effect of Animacy: F(1,31) = 5.073, p = 0.032, eta2 =
0.141). Again, there was no interaction between Plausi-
bility and Animacy (F(1,31) = 0.38, p = 0.54, eta2 = 0.012).

Follow-up exploratory analyses
To sum up, the spatial similarity analyses picked up on
the same effects of Plausibility that were detected by
the classic event-related analyses. In addition, the
spatial similarity analyses detected effects of Animacy
(animate > inanimate) that were not detected by the
event-related analyses. To further explore the relation-
ship between the univariate and multivariate findings,
we carried out two additional analyses, focusing on
the effect of Animacy in the plausible sentences
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between 300–500 ms (which we replicated using EEG in
Study 2). We addressed two questions.

First, was the failure to detect a univariate effect of
Animacy within this time window simply because we
constrained our univariate analysis to left temporal
sensors? As discussed under Methods, the reason why
we chose to average activity across these sensors is
that previous MEG studies have shown that this is
where the N400 effect is largest at the head surface
(e.g. Lau et al., 2013; Wang et al., 2018; Wang et al.,
2023). However, few MEG studies have tested for an
effect of Animacy on univariate activity. It is therefore
possible that by taking this analysis approach, we
missed a univariate effect of Animacy over other
sensors, which could have driven the multivariate
effect of Animacy observed in the 300–500 ms time
window. To determine whether this was the case, we
tested for an effect of Animacy on the mean response
between 300–500 ms in the plausible sentences at all
102 (combined) gradiometer sensors, and used cluster-
based permutation tests to control for multiple compari-
sons (Maris & Oostenveld, 2007), i.e. the same approach
that we took to carry out the univariate analysis in the
600–1000 ms time window. This mass univariate analysis
failed to reveal any spatial clusters showing an effect of
Animacy.

Having excluded the possibility that the spatial simi-
larity effect of Animacy was driven by a univariate
effect at any group of individual channels, we can con-
clude that it was driven by differences in similarity
amongst the spatial patterns produced across multiple
channels. This led to a second question: Would we be
able to detect the same spatial similarity effect if we
used only the subset of sensors that are known to con-
tribute to the N400 evoked response? To address this
question, we repeated the spatial similarity analysis,
but instead of using all 306 sensors at all 120 recording
sites, we used only the sensors at the nine left temporal
sites that we used in the univariate analysis (i.e. 27
sensors in total – 18 gradiometer and 9 magnetometer).
This subset analysis indeed revealed the same effect of
Animacy on spatial similarity values: the spatial patterns
produced by pairs of animate plausible nouns were again
more similar than those produced by pairs of inanimate
plausible nouns, t(31) = 2.29, p = 0.029, d = 0.787.

Discussion

The event-related and spatial similarity analyses of the
MEG data both revealed effects of Plausibility. The
larger evoked N400 response to anomalous than plaus-
ible nouns replicates findings from previous studies
(Halgren et al., 2002; Helenius et al., 1998; Ihara et al.,

2007; Maess et al., 2006; Wang et al., 2023). Here, we
show that it was followed by a smaller evoked effect
of Plausibility between 600–1000 ms at right frontal
recording sites. We further show that these same
effects of Plausibility were detected by the spatial simi-
larity analyses.

The spatial similarity analysis additionally revealed an
effect of Animacy. This effect was smaller than the effect
of Plausibility, but it showed a similar time course,
appearing between 300–500 ms. It was driven by a
greater similarity amongst the spatial patterns for
animate than inanimate nouns. These differences in
spatial similarity cannot be explained by differences in
similarity amongst the animate and inanimate nouns in
their word length or frequency, which went in the oppo-
site direction (see Study 1 Methods: Similarities in word
length and frequency between pairs of animate and inan-
imate nouns). Instead, they mirror the difference
amongst the animate and inanimate nouns in their
semantic similarity structures (animate > inanimate)
(Garrard et al., 2001; McRae et al., 1997; Randall et al.,
2004; Zannino et al., 2006). These findings have impor-
tant theoretical implications, which we consider in
detail in the General Discussion.

In this Discussion section, we will focus on why the
multivariate and univariate measures converged and
diverged from a methodological perspective.

Convergence between the spatial similarity and
event-related results
The results of the spatial similarity analyses converged
with the results of the event-related analysis in two
ways. First, the overall spatial similarity time series
revealed a sequence of “waveforms” whose timing
coincided with the event-related waveforms. Second,
the spatial similarity analysis captured all the effects
detected by the event-related analysis. For example,
between 300–500 ms (the N400 time window), the
spatial similarity values were larger for the anomalous
than for the plausible nouns, mirroring the larger N400
event-related response to anomalous than plausible
nouns.

From a mathematical perspective, the Pearson’s cor-
relation between a pair of spatial vectors should be inde-
pendent of each vector’s magnitude. It may therefore
not be obvious why the similarity between pairs of
spatial patterns, which describe neural activity across
multiple channels, covaried with the amplitude of
evoked activity at adjacent channels.

The reason for this is that evoked responses and
spatial similarities are derived from the same very
small neural signals that are embedded in noise. By
“noise”, we mean any measurement that is of no
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theoretical interest to the experimenter, i.e. that is
neither time-locked to the experimental stimuli, nor
modulated by the experimental variables of interest.3

To extract this signal from noise, both types of analyses
rely on the assumption that the signal of interest is con-
sistently produced across multiple trials of the same con-
dition, while noise fluctuates randomly across trials.

This idea has been discussed extensively in the event-
related literature where the goal is to determine whether
and how an experimental variable influences the
strength of the underlying neural signal produced by
individual items within a particular condition. To
isolate this signal, one can “filter out” noise by averaging
activity across multiple items (Luck, 2014a), as we did in
the current study. Alternatively, one can use a General
Linear Model, which models noise within the error
term (Baayen et al., 2008; Clark, 1973; Smith & Kutas,
2015). In a spatial similarity analysis, the same basic prin-
ciple applies except that, instead of estimating the
strength of the underlying neural signal produced by
individual items, the goal is to estimate the similarity
between the spatial patterns of signals produced by
pairs of items. Once again, to isolate this signal, one
can either filter out noise by averaging spatial similarity
values across multiple pairs of items, as we did in the
present study, or one can use a single trial model-
based approach, such as correlating a Model dissimilar-
ity matrix with a Neural dissimilarity matrix (e.g. Krieges-
korte et al., 2008; Nili et al., 2014).

The sensitivity of these two types of analyses to over-
lapping sources of signal and noise can explain both
aspects of the convergence we observed between the
event-related and spatial similarity results. First, it
explains why, regardless of experimental condition, the
rise and fall of the spatial similarity values tracked the
rise and fall (relative to baseline) of the evoked M170
and N400 ERF components. At baseline, when no input
was presented, there was no signal – only noise. There-
fore, the expected value of both the event-related
response and Pearson’s rwas zero. However, as the infor-
mation associated with each critical word became avail-
able to each level of the cortical hierarchy, it produced
transient increases and decreases in the strength of
the neural signal. Because each word consistently pro-
duced the same transient increases and decreases in
activity within the same neural sources, the event-
related analysis was able to detect a consistent rise
and fall in the amplitude of the magnetic field across
multiple items at particular sets of recording sensors.
Because these increases and decreases in activity had
consistent scalp topographies (i.e. they were consist-
ently produced at some recording channels but not
others), the spatial similarity analysis was able to

detect the same increases and decreases in signal
strength as increases and decreases in the similarity in
the spatial patterns produced across multiple pairs of
words.

Second, the shared sensitivity of the event-related
and spatial similarity analyses to common sources of
signal and noise also explains why whenever the
event-related analyses detected a larger response to
the anomalous than the plausible words, pairs of anom-
alous nouns produced more similar patterns than pairs
of plausible words. To understand why the evoked and
spatial similarity effects (i.e. the differences between
conditions) covaried, the key factor to consider is the
signal-to-noise ratio in each condition. In the presence
of signal and no noise, two identical spatial patterns
would produce a Pearson’s r value of 1. For example, if
two anomalous words each produced twice as much
signal at the same three measurement channels as two
plausible words, then, in the absence of noise, the
spatial similarity between the two anomalous words
would be the same as between the two plausible
words (in both cases, Pearson’s r is 1). However, any
noise will result in an underestimation of the true
spatial similarity value (r < 1), such that the weaker the
signal-to-noise ratio, the greater the reduction of the
estimated value. Therefore, on the assumption that
noise is held constant, the larger signal produced by
the two anomalous words will result in a greater
signal-to-noise ratio. Therefore, our estimation of the
spatial similarity between these two anomalous words
will be more accurate, with an r value that is larger
(closer to the true Pearson’s r value of 1) than between
the two plausible words.

These considerations raise the question of whether it
is possible to carry out a multivariate analysis that is not
sensitive to univariate activity. For example, with the
current design, is there a type of multivariate analysis
that would detect the effects of Animacy, but not the
rise and fall of condition-non-specific evoked activity,
or the effects of Plausibility on the evoked response?

One approach that some researchers have taken to
reduce the influence of univariate activity is to remove
condition-non-specific responses before carrying out a
multivariate analysis. This so-called “cocktail blank
removal” removes the “common” mean pattern of
activity across all conditions by subtracting it from
activity produced by each individual condition before
computing Pearson’s correlations (Haxby et al., 2001;
Op de Beeck et al., 2006). However, this method can
introduce false dependencies when examining differ-
ences in spatial similarity between conditions (see Die-
drichsen et al., 2011 and Garrido et al., 2013 for
discussion).
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A second approach, previously attempted in the fMRI
literature, is to remove univariate effects (differences
between conditions) before carrying out a multivariate
analysis. Here, for each condition, within each spatial
region, the mean response across all voxels and all
trials is subtracted from the activity produced by each
individual trial at each voxel (Jimura & Poldrack, 2012;
LaRocque et al., 2013). However, this approach intro-
duces other practical and conceptual difficulties (for dis-
cussion, see Hebart & Baker, 2018).

A third approach for dissociating multivariate and
univariate activity is to use a different measure of
spatial similarity – the Euclidean distance, instead of
Pearson’s correlations (or Pearson’s distance, i.e. 1 - r).
In contrast to these Pearson’s measures, the Euclidean
distance is invariant to condition-non-specific responses
(Guggenmos et al., 2018; Walther et al., 2016). In
addition, at least in fMRI, there is evidence that this
measure can be insensitive to univariate differences
between conditions (e.g. see Walther et al., 2016,
Figure 8). However, to yield results that can be meaning-
fully interpreted, it is necessary to use a cross-validated
Euclidean distance measure (Guggenmos et al., 2018;
Walther et al., 2016).4 Cross-validation requires the
dataset to be split into at least two partitions. While par-
titioning the data is feasible in studies of visual percep-
tion in which the same visual stimulus is usually
presented multiple times, this would introduce signifi-
cant challenges in studies of language processing. This
is because we typically present multiple different linguis-
tic items within each experimental condition, and each
individual linguistic item is usually presented only
once to avoid psychological confounds. Therefore, to
compute the cross-validated Euclidean distance, we
would need to match items across partitions on numer-
ous potentially confounding variables. Moreover, cross-
validation becomes impossible if we are interested in
isolating specific neural patterns that are unique to indi-
vidual items (e.g. Wang et al., 2018).

Divergence between the spatial similarity and
event-related results
In contrast to the effect of Plausibility, the effect of
Animacy was only detected by the multivariate spatial
similarity analysis. We saw no evidence that this effect
was detected by the univariate analysis, either when
we collapsed across left temporal sites, or when we
carried out a mass univariate analysis at all sensors.
Moreover, the multivariate effect was observed, regard-
less of whether the absolute amplitude of the event-
related responses (and spatial similarity values) was rela-
tively small (on the plausible nouns) or large (on the
anomalous nouns).

The reason why multivariate measures, such as spatial
similarity analysis, are sensitive to effects that are invis-
ible to univariate measures is that they can capture sys-
tematic differences between conditions in how patterns
of activity, measured across multiple channels, vary
across trials. In the present study, the spatial similarity
analysis was able to exploit the fact that, across trials,
the spatial patterns produced by pairs of animate
nouns were consistently more similar than those pro-
duced by pairs of inanimate nouns.

Study 2: EEG

Introduction

In this second study, we presented participants with the
same set of stimuli, but this time measured EEG rather
than MEG. We had two goals. The first was to replicate
the broad pattern of convergence and divergence
between the evoked and spatial similarity effects using
a complementary technique. The second was to deter-
mine whether, where and how the EEG and MEG univari-
ate and multivariate measures converged and diverged.

Although MEG and EEG are both sensitive to tangen-
tial dipole sources, only EEG can detect radial dipoles
(Ahlfors et al., 2010; Hämäläinen et al., 1993; Nunez,
1990). It is therefore able to detect activity that is invis-
ible to MEG (Ahlfors et al., 2010; Siedenberg et al.,
1996). In the present study, we were particularly inter-
ested in whether EEG would detect additional activity
produced by anomalous nouns in the post-N400 time
window, between 600–1000 ms. Although MEG did
reveal a late effect of Plausibility over right frontal
sensors in this late time window (anomalous > plausible),
the size of this effect was small. In contrast, previous EEG
studies have shown that between 600–1000 ms, anoma-
lous words that disrupt the process of deep comprehen-
sion produce a robust posteriorly distributed positive-
going ERP component, known as the “semantic P600”
(Brothers et al., 2020; Kuperberg, 2007; Kuperberg
et al., 2003; Kuperberg et al., 2020; van de Meerendonk
et al., 2009). This ERP component is thought to be func-
tionally related to the P300 ERP component, to which
MEG is known to be relatively insensitive (Ahlfors et al.,
2010; Siedenberg et al., 1996). We were therefore inter-
ested in directly comparing the magnitude of the ERP
and ERF effects produced by the same set of anomalous
(versus plausible) words in this late time window, as well
as exploring any differences between EEG and MEG in
how Animacy modulated spatial similarity in this same
time window.

Finally, we were interested in whether EEG would
detect an interaction between Plausibility and Animacy
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in the earlier N400 time window. Although the MEG
study showed no evidence of this interaction, a previous
ERP study with a similar design, but using a different set
of stimuli, showed that animate nouns produced a
smaller effect of Plausibility than inanimate nouns (Pac-
zynski & Kuperberg, 2011, Experiment 1). This interaction
was largely driven by a less negative waveform to the
anomalous animate than the anomalous inanimate
nouns. In the present study, we were interested in
whether this ERP finding would replicate.

Methods

We collected EEG data in two separate cohorts of partici-
pants. The first cohort was the same set of 32 partici-
pants who participated in Study 1 at Massachusetts
General Hospital. In these participants, EEG data were
acquired at the same time as the MEG data, using a
70-channel MEG-compatible scalp electrode system
(BrainProducts, München), with an online reference at
the left mastoid. Signals were digitised at 1000 Hz,
with an online bandpass filter of 0.03 - 300 Hz.

The second EEG dataset was collected in a new cohort
of 40 participants (19 females, mean age: 21.5 years;
range: 18–32 years) at Tufts University, using a subset
of the scenarios used in Study 1 (160 out of 200).
Written consent was obtained from these participants,
based on guidelines from the Tufts University Social,
Behavioural, and Educational Research Institutional
Review Board. These EEG data were acquired using
Biosemi ActiveTwo acquisition system from 32 active
electrodes using a modified 10/20 system montage.
Signals were digitised at 512 Hz, with a bandpass of
DC-104 Hz. The EEG data were referenced offline to
the average of the left and right mastoid channels.

To maximise statistical power, we combined these
two EEG datasets, yielding a dataset of 72 participants
in total.5

EEG data preprocessing
The two EEG datasets were preprocessed using Fieldtrip
(Oostenveld et al., 2011). Because they were acquired
with different online filtering settings (0.03 - 300 Hz vs.
DC - 104 Hz), we applied an offline low-pass filter of
30 Hz to the first EEG dataset and an offline band-pass
filter of 0.1 - 30 Hz to the second EEG dataset. In
addition, because the two datasets were acquired with
different sampling rates (1000 Hz vs. 512 Hz), we
down-sampled both datasets to 500 Hz. In the first
dataset, we removed, on average, seven “bad” EEG chan-
nels (out of the 70 channels), which were subsequently
interpolated using spherical spline interpolation (Perrin
et al., 1989).

Each individual’s EEG data was segmented into−100–
1000 ms epochs, relative to noun onset. We applied an
Independent Component Analysis to correct for eye
movement artifacts (Bell & Sejnowski, 1997; Jung et al.,
2000). Remaining artifacts were removed based on
visual inspection, leaving 39 - 40 artifact-free trials in
each of the four conditions across the two EEG datasets.

Event-related analysis
The spatial and temporal characteristics of both the
N400 and P600 ERP effects have been very well charac-
terised in previous studies. For statistical analyses, we
therefore selected spatiotemporal regions of interest
based on those used in a recent study that examined
both these ERP components (Kuperberg et al., 2020).
We operationalised the N400 as the average activity
between 300–500 ms across six centro-parietal elec-
trode sites (C3, Cz, C4, CP1, CPz, CP2). We operationa-
lised the P600 as the average activity between 600–
1000 ms across six posterior electrode sites (P3, Pz, P4,
O1, Oz, O2). For each component, we carried out a
repeated-measures ANOVA with two within-subject vari-
ables: Plausibility (plausible, anomalous) and Animacy
(animate, inanimate).

Spatial similarity analysis
As in the MEG study, in each participant, at each time
point, we correlated the vectors that characterised the
spatial patterns of activity between every pair of trials
within each of the four conditions, and then averaged
the resulting pairwise spatial similarity values to
produce four spatial similarity time series. We then aver-
aged these spatial similarity values between 300–500 ms
and between 600–1000 ms, and tested for significant
differences across conditions by carrying out 2 × 2
repeated measures ANOVAs as described above. To visu-
alise the EEG spatial similarity results and compare them
with the ERPs, we constructed four grand-average
spatial similarity time series.

Results

ERP results
Description of ERP time courses. As shown in Figure 2A,
the critical nouns evoked an N1/P1, which peaked at
∼100 ms over fronto-central (N1) and posterior (P1) elec-
trode sites, followed by a P2 component, peaking at
∼200 ms over fronto-central sites. These early com-
ponents were followed by the N400, which was larger
to the anomalous than the plausible continuations, and
was visible between 300–500 ms over centro-parietal
sites. Between 600–1000 ms, the anomalous nouns pro-
duced a large posteriorly distributed positive-going slow
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Figure 2. Results of the EEG event-related and spatial similarity analyses (n = 72). A. Grand-average ERP waveforms following the
onset of critical nouns at a midline central electrode (Cz) and a midline posterior electrode (Oz). The duration of the critical nouns
(0 - 450 ms) and the subsequent word (550 - 1000 ms) are marked with gray bars on the x-axes. B. Topographic maps show the dis-
tributions of the effects of Plausibility separately for the animate and inanimate conditions between 300–500 ms (left and middle) and
for the collapsed animate and inanimate conditions between 600–1000 ms (right). The centro-parietal and posterior EEG electrodes
that showed significant differences are marked with white dots. C. Bar graphs showing the amplitude of the event-related potentials
(ERPs) in each condition, averaged between 300–500 ms across central electrode sites (left), and between 600–1000 ms across pos-
terior electrode sites (right). Error bars represent ±1 standard error of the mean. Between 300–500 ms, the anomalous nouns produced
a significantly larger (more negative-going) N400 than the plausible nouns. There was no significant difference in the amplitude of the
N400 evoked by the animate and inanimate nouns, in either the plausible or the anomalous condition. However, in the anomalous
condition, the animate nouns produced a smaller negativity than the inanimate nouns. As discussed in the main manuscript, we
suggest that this may reflect an earlier onset of the P600 produced by the animate (versus inanimate) anomalies. Between 600–
1000 ms, the anomalous nouns produced a larger P600 than the plausible nouns. The amplitude of the P600 did not differ significantly
between the animate and inanimate nouns in either the plausible or anomalous condition. D. Grand-average spatial similarity time
series following the onset of critical nouns in each of the four conditions. The duration of the critical nouns (0 - 450 ms) and the
subsequent word (550 - 1000 ms) are marked with gray bars on the x-axis. E. Bar graphs showing the mean EEG spatial similarity
values in each condition, averaged between 300–500 ms (left) and between 600–1000 ms (right). Error bars represent ±1 standard
error of the mean. Between 300–500 ms, the anomalous nouns produced larger spatial similarity values than the plausible nouns. In
the plausible condition, the animate nouns produced significantly larger spatial similarity values than the inanimate nouns. In the
anomalous condition, however, the spatial similarity values were significantly larger in the inanimate than the animate condition.
Between 600–1000 ms, the anomalous nouns produced significantly larger spatial similarity values than the plausible nouns. In
the plausible condition, the animate nouns produced larger spatial similarity values than the inanimate nouns, although this effect
only approached significance. In the anomalous condition, the spatial similarity values were significantly larger in the inanimate
than the animate condition.
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wave – the P600 effect. Within this late time window, the
P1 evoked by the word following the critical noun was
visible at occipital electrodes, peaking at ∼650 ms.

300–500ms. As shown in Figure 2 (left), between 300–
500 ms, the N400 was larger to the anomalous than
the plausible nouns (Main effect of Plausibility: F(1,71) =
132.65, p < 0.001, eta2 = 0.651). There was also a signifi-
cant interaction between Plausibility and Animacy
(F(1,71) = 15.91, p < 0.001, eta2 = 0.183). This interaction
was driven by a smaller negativity to the anomalous
animate than the anomalous inanimate nouns (t(1,71) =
5.41, p < 0.001, d = 0.64), but no difference between
the plausible animate and plausible inanimate nouns
(t(1,71) =−0.27, p = 0.786, d =−0.03).

600–1000ms. Between 600–1000 ms, the anomalous
nouns produced a larger late posteriorly distributed
P600 than the plausible nouns (Main effect of Plausibility:
F(1,71) = 108.48, p < 0.001, eta2 = 0.604). There was no
main effect of Animacy (F(1,71) = 0.51, p = 0.479, eta2 =
0.007), and no interaction between Plausibility and
Animacy (F(1,71) = 1.87, p = 0.176, eta2 = 0.026) in this
time window.

EEG spatial similarity results
Description of the EEG spatial similarity time series. As
shown in Figure 2D, the shape of the EEG spatial simi-
larity time series mirrored that of the ERP waveforms,
with peaks at ∼100 ms (corresponding to the N1/P1),
at ∼200 ms (corresponding to the P200), and at
400 ms (corresponding to the N400). We also observed
a slow rise and fall of spatial similarity values between
600–1000 ms, which corresponded to the slow rise and
fall of the P600 waveform. We note, however, that
whereas the polarity of the P600 ERP component is
opposite to that of the earlier N400 component, spatial
similarity values have no polarity, and so these values
are positive in both the 300–500 ms and 600–1000 ms
time windows. Superimposed on the slow rise and fall
of spatial similarity values between 600–1000 ms, one
can see a rise and fall of spatial similarity values that
mirrors the early ERP components produced by the fol-
lowing word.

300–500ms. Between 300–500 ms the spatial similarity
values were larger for the anomalous than the plausible
nouns (Main effect of Plausibility: F(1,71) = 40.33, p <
0.001, eta2 = 0.362). In addition, mirroring the ERP
N400 results, Plausibility interacted with Animacy
(F(1,71) = 8.838, p = 0.004, eta2 = 0.11) due to smaller
spatial similarity values for the anomalous animate
than the anomalous inanimate nouns (t(71) =−2.084, p

= 0.041, d = 0.25). On the plausible nouns, the spatial
similarity analysis detected an effect of Animacy that
was not detected by the ERPs, with greater spatial simi-
larity values for the plausible animate than the plausible
inanimate nouns (t(71) = 2.15, p = 0.035, d = 0.25).

600–1000ms. Mirroring the late ERP effect, the spatial
similarity values were larger for the anomalous than
the plausible nouns (Main effect of Plausibility: F(1,71) =
27.75, p < 0.001, eta2 = 0.28). In addition, the spatial simi-
larity analysis again detected effects of Animacy that
were not detected by the event-related analysis.
However, within this later 600–1000 ms time window,
the effect of Animacy went in a different direction,
depending on whether the nouns were plausible or
anomalous, reflected by a significant interaction
between Plausibility and Animacy (F(1,71) = 14.10, p <
0.001, eta2 = 0.17). On the plausible nouns, the spatial
similarity values were larger for the animate than for
inanimate nouns (although this effect only approached
significance: t(71) = 1.63, p = 0.099, d = 0.20). For the
anomalies, however, inanimate nouns produced larger
spatial similarity values than animate nouns (t(71) =
3.99, p < 0.001, d = 0.47).

Follow-up exploratory analyses
Just as for MEG, we carried out two additional analyses
to further explore the relationship between the univari-
ate and multivariate effects of Animacy between 300–
500 ms after the onset of the plausible nouns.

First, to ensure that we did not miss any evoked effect
of Animacy over electrode sites that were not included
in our a priori selected regions of interest, we tested
for an effect of Animacy on the mean evoked activity
between 300–500 ms at all electrode sites, and used
cluster-based permutation tests to control for multiple
comparisons (Maris & Oostenveld, 2007). This analysis
failed to reveal any spatial clusters showing a significant
event-related effect of Animacy.

Second, we tested for a spatial similarity effect of
Animacy between 300–500 ms using only the subset of
centro-parietal electrode sites that we used in the uni-
variate analysis to examine the N400. In contrast to
MEG, this analysis did not reveal a significant spatial
similarity effect (t(71) = 0.76, p = 0.45, d = 0.18).

Discussion

This EEG study replicated the basic pattern of conver-
gence and divergence between the event-related and
spatial similarity results that we observed in the MEG
study (Study 1). First, the spatial similarity time series
again picked up on the rise-and-fall morphology of
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both early and late event-related components (here, the
N1/P1, P2, N400 and P600), and it again revealed effects
of Plausibility (anomalous > plausible) in both the 300–
500 ms and 600–1000 ms time windows. Second, the
spatial similarity analysis again revealed additional
effects of Animacy that were not detected by the
event-related analysis: Between the 300–500 ms, the
spatial patterns produced by the plausible animate
nouns were again more similar to each other than
those produced by the plausible inanimate nouns, mir-
roring their semantic similarity structures, although, as
discussed further below, the effect of Animacy on
spatial similarity values went in the opposite direction
on the anomalous nouns.

In the Discussion of Study 1, we focused on why the
univariate and multivariate findings converged and
diverged from a methodological perspective. In this Dis-
cussion section, we will focus on why the present EEG
findings converged and diverged from the previous
MEG findings, also from a methodological perspective.
We will discuss the theoretical significance of the full
set of results in the General Discussion.

Convergence between the MEG and EEG results
Both MEG and EEG techniques are sensitive to tangen-
tially-oriented dipoles located within cortical sulci. There-
fore, the broad similarities between the MEG and EEG
results are not surprising. Our finding that both MEG
and EEG detect the well-known effect of Plausibility on
the N400 replicates many previous studies (MEG:
Halgren et al., 2002; Helenius et al., 1998; Ihara et al.,
2007; Maess et al., 2006; Wang et al., 2023; ERP: Kuperberg
et al., 2020; Kutas & Hillyard, 1980; Nieuwland et al., 2020).
Our finding that EEG was able to detect the same multi-
variate effect of Animacy as MEG is consistent with pre-
vious studies reporting a similar convergence between
MEG and EEG multivariate effects (Cichy & Pantazis,
2017; Wang et al., 2020). It is particularly encouraging
that EEG was able to detect a spatial similarity effect of
Animacy despite the fact that there were fewer EEG elec-
trodes (70 electrodes in 32 participants, and 32 electrodes
in the remaining 40 participants) than MEG sensors (306
sensors). We note, however, that in contrast to MEG,
EEG failed to detect the multivariate effect of Animacy
between 300–500 ms when we used only a subset of
recording sites, probably because the EEG signal is
more smeared than MEG due to the high resistance of
the skull relative to the scalp (Geisler & Gerstein, 1961;
Grynszpan & Geselowitz, 1973).

Divergence between the EEG and MEG results
In addition to the similarities between the EEG and MEG
results, we saw some differences between the two

techniques in the effects that they detected on the
anomalous nouns.

MEG was relatively insensitive to the P600 ERP effect.
Perhaps the most striking difference between EEG and
MEG was in the magnitude of the late evoked effect pro-
duced by the anomalous (versus plausible) nouns
between 600–1000 ms. Consistent with many previous
studies (Brothers et al., 2020; Kuperberg, 2007; Kuperberg
et al., 2003; Kuperberg et al., 2020; van de Meerendonk
et al., 2009), EEG detected a robust positive-going P600
effect within this time window, with an effect size of d
= 1.23 at posterior electrode sites. In contrast, the MEG
evoked effect within this time window was much
smaller, with an effect size of d = 0.20 (estimated from
the right frontal sensors that showed a significant
cluster in the mass univariate analysis). We also note
that because MEG gradiometer sensors do not carry infor-
mation about the polarity of the magnetic field (i.e.
whether the magnetic flux is leaving or entering the
head), the late MEG effect was of the same polarity as
the earlier N400 effect.

We suggest that the reason why EEG is so much
more sensitive than MEG to the P600 at the scalp
surface is that it is able to detect widespread sources
within frontal and parietal cortices that may contribute
to this component. In principle, activity at the scalp
surface can potentially stem from two types of dipole
sources within these fronto-parietal regions: Radially
oriented dipoles, which are produced within the
crowns of gyri and the bottom of sulci, and tangen-
tially orientated dipoles, which are produced within
the walls of different sulci.6 MEG, however, is relatively
blind to these sources. Radially orientated dipole
sources typically do not result in a detectable magnetic
field (Cuffin & Cohen, 1979; Hämäläinen et al., 1993),
and if two tangential dipoles face in the same direc-
tion, which is common in frontal and parietal cortices,
they will each produce magnetic fields that cancel
each other out (Ahlfors et al., 2010; Ahlfors et al.,
2010). In contrast, EEG is highly sensitive to both
types of sources: in both cases, the electrical dipoles
will summate to produce large electric fields (Nunez,
1990).

A similar argument has been made for why scalp-
recorded EEG is so much more sensitive than MEG to
the well-known P300 evoked response (the P3b;
Ahlfors et al., 2010; Siedenberg et al., 1996), which is
also thought to reflect widespread activity within
frontal and parietal regions (Soltani & Knight, 2000).
Indeed, several researchers have noted that the P600
ERP component is functionally related to the P300
(Coulson et al., 1998; Kuperberg et al., under review;
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Osterhout et al., 2012; Sassenhagen et al., 2014; Sassen-
hagen & Fiebach, 2019).

These differences between EEG and MEG have poten-
tial functional implications. When a linguistic anomaly
cannot be integrated into a high-level interpretation, it
is thought to trigger multiple error-based processes
within the 600–1000 ms time window (see Kuperberg
et al., under review). Thus, the differential sensitivity of
MEG and EEG to distinct neuroanatomical sources
between 600–1000 ms means that the two techniques
may also be differentially sensitive to distinct aspects
of the prolonged error-based response within this time
window. We elaborate further on this idea in the
General Discussion.

Between 300–500 ms, EEG but not MEG produced a
smaller evoked response to anomalous animate
than anomalous inanimate nouns. We also saw differ-
ences between the EEG and MEG results in the earlier
300–500 ms time window. Similar to the event-related
MEG analysis, the ERP analysis showed that the anoma-
lous continuations produced a larger N400 than the
plausible continuations. However, in contrast to MEG,
but replicating a previous ERP study using a similar
design (Paczynski & Kuperberg, 2011, Experiment 1),
we observed an interaction between Plausibility and
Animacy because the anomalous animate nouns (e.g. “
… clamped the *guests…”) produced a smaller nega-
tivity than the anomalous inanimate nouns (e.g. “…
greeted the *wires…”).

We suggest that the smaller negativity produced by
the animate anomalous nouns within the 300–500 ms
time window reflected an early-starting positive-going
P600, which was triggered because, in addition to violat-
ing the selectional constraints of the prior verb, the
animate anomalies also violated the comprehender’s
canonical expectations that inanimate direct object
noun-phrases should follow animate subject noun-
phrases – expectations based on the so-called
“animacy hierarchy” (Paczynski & Kuperberg, 2011; Sil-
verstein, 1976). In EEG, this early-starting positivity-
going P600 would have artificially reduced the ampli-
tude of the N400 produced by the anomalous animate
nouns at the scalp surface as a result of component
overlap; that is, because the N400 and late posterior
positivity/P600 ERP components both have posterior
scalp distributions, if they overlap in time, their opposite
polarities will cancel each other out (Brouwer & Crocker,
2017; Kuperberg et al., 2007).7 This would explain why
we saw no such interaction between Plausibility and
Animacy in MEG where spatiotemporal component
overlap is less of an issue (a) because the magnetic
field does not have polarity, and so any ERF effect

produced between 600–1000 ms had the same polarity
as the earlier N400, and (b) because MEG is relatively
insensitive to the P600 effect, as discussed above (for
further discussion of component overlap in EEG versus
MEG, see Wang et al., 2023, Supplementary Materials,
Discussion Section 2).

On anomalous nouns, MEG and EEG produced spatial
similarity effects of Animacy that went in opposite
directions. When the critical nouns were plausible (i.e.
when they matched the animacy-based constraints of
the preceding verb), both MEG and EEG showed that
pairs of the animate nouns produced more similar
spatial patterns than pairs of the inanimate nouns, mir-
roring their semantic similarity structures (animate >
inanimate). However, on the anomalous nouns, the
MEG and EEG spatial similarity effects of Animacy went
in the opposite direction: In MEG, the effect on the
anomalies went in the same direction as on the plausible
nouns (animate > inanimate). However, in EEG, the
spatial patterns were more similar for the inanimate
anomalous than the animate anomalous nouns; that is,
instead of mirroring the similarity structure of animacy
features that were encoded within the anomalous
bottom-up input itself (animate > inanimate), the effect
mirrored the semantic similarity structure of the
animacy features that were predicted, based on the
animacy-based constraints of the prior verb (inanimate
> animate). The fact that EEG and MEG detected
different spatial similarity effects of Animacy on the
anomalous continuations is particularly notable in the
late 600–100 ms window where there was no difference
in the amplitude of the evoked response produced by
the animate and inanimate anomalous nouns.8 Once
again, these findings suggest that the two techniques
may be differentially sensitive to distinct underlying
neural sources activated by the anomalies within this
late time window. We discuss the theoretical signifi-
cance of this finding in the General Discussion.

General discussion

We measured MEG and EEG as participants read dis-
course scenarios with animate or inanimate critical
words that were either plausible (matching the
animacy-based constraints of the prior verb) or anoma-
lous (mismatching these constraints). We examined the
effects of both Plausibility and Animacy by carrying
out both event-related and spatial similarity analyses
on both datasets.

The univariate event-related analyses revealed effects
of Plausibility (anomalous > plausible) both between
300–500 ms (the N400) and in the later 600–1000 ms
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time window. The multivariate spatial similarity analyses
picked up on the same event-related waveforms and the
same effects of Plausibility. In addition, it detected
effects of Animacy that were not detected by the
event-related analyses.

We also saw convergence and divergence between
MEG and EEG findings. Between 300–500 ms, the MEG
and EEG univariate and multivariate findings largely con-
verged. However, between 600–1000 ms, we saw differ-
ences between the effects detected by MEG and EEG in
the anomalous condition.

In Study 1, we offered a detailed discussion of why
the multivariate and the event-related measures con-
verged and diverged from a methodological perspec-
tive. In Study 2, we offered a detailed discussion of the
convergence and divergence between the MEG and
EEG findings, also from a methodological perspective.
In this General Discussion, we focus on the theoretical
interpretation of our findings. We argue that the full set
of results can be understood within a predictive
coding framework in which animacy-based semantic
features of incoming words are encoded between
300–500 ms regardless of their predictability, but this
only produces prediction error and a larger univariate
response when these features fail to match prior predic-
tions. We suggest that, between 600–1000 ms, a failure
of the predictive coding algorithm to settle on an anom-
alous interpretation triggers both reprocessing of the
bottom-up input, as well as a re-activation of prior
predictions.

We conclude by considering the broader implications
of our findings, offering some general recommendations
for how best to integrate these different analysis
approaches (univariate and multivariate) and techniques
(MEG and EEG) to gain deeper insights into the neural
basis of language comprehension.

Theoretical interpretation

The univariate N400 effect of Plausibility
The univariate effect of Plausibility on the N400 (anoma-
lous > plausible) replicates many previous findings (e.g.
MEG: Halgren et al., 2002; Helenius et al., 1998; Ihara
et al., 2007; Maess et al., 2006; Wang et al., 2023; ERP:
Kuperberg et al., 2020; Kutas & Hillyard, 1980; Nieuwland
et al., 2020). The N400 is thought to reflect the ease of
accessing/retrieving the semantic features associated
with new lexical inputs (Kuperberg, 2016; Kutas & Feder-
meier, 2011). If these semantic features have already
been pre-activated by the prior context, then they will
be easier to retrieve and so the amplitude of the N400
will be reduced. In the present study, before observing
the critical noun, the brain was able to use the

animacy-based selectional constraints of the preceding
verb to pre-activate upcoming semantic features
(Szewczyk & Schriefers, 2013; Wang et al., 2020). For
example, the context “… he greeted the…” led to the
pre-activation of semantic features associated with
<animate > entities (e.g. <can breathe>, <can move>).
It was therefore relatively easy to retrieve/access the
semantic features of plausible nouns that matched
these prior predictions, resulting in a relatively small
N400. However, when an anomalous noun was encoun-
tered, all these semantic features had to be retrieved de
novo, resulting in a larger N400 (Kuperberg et al., 2020;
Paczynski & Kuperberg, 2011, 2012; Szewczyk & Schrie-
fers, 2013).

The multivariate effect of Animacy between 300–
500ms
The effect of Animacy revealed by the multivariate simi-
larity analysis in this time window is more novel.
Although previous MEG/EEG studies have shown that
representational similarity analysis is able to distinguish
the animacy of visual objects (Carlson et al., 2013; Cichy
et al., 2014; Cichy & Pantazis, 2017; Khaligh-Razavi et al.,
2018), this is the first study to show that these methods
can discriminate between animate and inanimate
incoming words during real-time language comprehen-
sion. Crucially, our results also offer new insights into
the underlying mechanisms and temporal dynamics of
this process.

First, we show that this multivariate distinction fol-
lowed the basic time course of the N400 event-related
component. This provides additional evidence that
300–500 ms provides a critical time window in which
the perceptual features of incoming words first make
contact with distributed knowledge stored within
semantic memory (Federmeier & Laszlo, 2009; Kutas &
Federmeier, 2011).

Second, we show that the spatial patterns produced
by pairs of animate nouns were more similar than
those produced by pairs of inanimate nouns. This is
important because it supports a longstanding proposal
in Cognitive Science that categorical distinctions might
emerge implicitly from differences in patterns of covaria-
tion amongst the “microfeatures” that comprise
different concepts (Hinton et al., 1986; Kemp & Tenen-
baum, 2008; Rogers & McClelland, 2008), including
animacy (Devlin et al., 1998; Gonnerman et al., 1997;
Moss et al., 1998; Taylor et al., 2011). Specifically, a
large body of previous work has established that pairs
of animate words are more similar to one another and
have more semantic features in common than pairs of
inanimate words (Garrard et al., 2001; McRae et al.,
1997; Randall et al., 2004; Zannino et al., 2006). For
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example, the two animate words, “guests” and “sailors”,
share many semantic features (e.g., <sentient>, <can
move>, <can breathe>), while the two inanimate
words, “wire” and “fruit”, are each associated with dis-
tinct semantic features (e.g. <straight > for “wire”,
<tasty > for “fruit”). Using Word2Vec (Mikolov et al.,
2013), we confirmed that this was the case for the
current stimulus set (see Study 1 Methods: Semantic
similarity between pairs of animate and inanimate
nouns). On the assumption that the unique set of micro-
features associated with each individual word is rep-
resented by a unique set of neuroanatomical sources
that produce a unique spatial pattern of electric and
magnetic fields at the head surface (Wang et al., 2018),
the spatial patterns produced by pairs of animate
words will be more similar than those produced by
pairs of inanimate words.

A spatial similarity analysis at the scalp surface
cannot tell us which underlying sources produced the
effect. However, we know that within the N400 time
window, lexical representations, which are thought to
be represented in multiple regions of the left temporal
cortex (Hirshorn et al., 2016; Lau et al., 2008; Wool-
nough et al., 2021), play a crucial role in mapping
orthographic and phonological forms onto semantic
features (Wang et al., 2023). These semantic features
are thought to be represented within multimodal
regions that are widely distributed across the cortex
(Huth et al., 2016; Martin & Chao, 2001). They may
also be “bound together” as conceptual represen-
tations within the anterior and medial temporal lobe
(Lambon-Ralph et al., 2017), and there is some evi-
dence that semantic features may be topographically
coded within these temporal regions (e.g. Chao et al.,
1999; Haxby et al., 2001). We therefore speculate that
the scalp-recorded spatial patterns stemmed from
both sources within the left temporal lobe as well as
more widespread cortical regions.

The idea that these spatial patterns stemmed from
left temporal regions would be consistent with our
finding in the MEG study that the same spatial similarity
effect was produced when we repeated the analysis
using only the subset of left temporal MEG sensors
that reflect lexico-semantic activity between 300–
500 ms within the left temporal cortex (Wang et al.,
2023). It would also be consistent with evidence that
patients with localised temporal lesions can show
animacy-based category specific deficits (e.g. Warring-
ton & McCarthy, 1987; Warrington & Shallice, 1984),
and that the animacy of objects and words can be
decoded based on spatial patterns produced within
the left temporal lobe (Devereux et al., 2013; Fairhall &
Caramazza, 2013; Liuzzi et al., 2020).

The idea that these spatial patterns stemmed from
widely distributed cortical regions would be consistent
with evidence that animacy-based categorical structure
can emerge from patterns of covariation across semantic
features within a widely distributed semantic system
(Taylor et al., 2011; Tyler & Moss, 2001), including evi-
dence for animacy-based categorisation deficits in
patients with non-focal neuropathologies such as mid-
stage Alzheimer’s disease (Gonnerman et al., 1997; see
also Devlin et al., 1998 for discussion).

Better together: synthesising the univariate and
multivariate results between 300–500ms
Taken together, therefore, the univariate and multi-
variate results complement each other. Both methods
tell us that during sentence comprehension, the brain
encodes or accesses the semantic features of incoming
words between 300–500 ms after their onset. The
spatial similarity results tell us that this occurs regardless
of their predictability. The event-related results tell us
that only the process of encoding unpredicted implausi-
ble semantic features produces changes in the overall
strength of neural activity (anomalous > plausible). We
now need a computational theory that can explain
both sets of findings.

One such theory is predictive coding – a compu-
tational account of how the brain approximates Baye-
sian inference (Friston, 2005; Mumford, 1992; Rao &
Ballard, 1999). According to predictive coding, as new
bottom-up information reaches each level of the cortical
hierarchy, it activates two types of connectionist units –
“state units” and “error units”. State units that encode
contextual information at higher levels of the hierarchy
continually generate predictions that attempt to
“explain” expected information at the level below. Any
new bottom-up information that matches these top-
down predictions is suppressed within lower-level
error units, while any residual unpredicted information
that cannot be explained activates these error units, pro-
ducing “prediction error” (Friston, 2005; Mumford, 1992;
Rao & Ballard, 1999; Spratling, 2016). This lower-level
prediction error is then used to update the information
encoded within the higher-level state units, which, in
turn, produce more accurate top-down predictions. By
minimising prediction error over multiple iterations of
the predictive coding algorithm, the brain converges
on the set of representations that best explain the
bottom-up input.

Several researchers have suggested that the N400
may reflect prediction error produced during predictive
coding (Bornkessel-Schlesewsky & Schlesewsky, 2019;
Kuperberg et al., 2020; Rabovsky & McRae, 2014; Xiang
& Kuperberg, 2015). In recent work, we have used a
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predictive coding computational model to show that the
effect of predictability on the N400, as well as its rise-
and-fall morphology, can be simulated by the magni-
tude of prediction error produced by error units at
lexical and semantic levels of representation, i.e. lexico-
semantic prediction error (Nour Eddine, 2021; Nour
Eddine et al., 2022).9

To understand how this framework can explain both
the univariate and multivariate findings between 300–
500 ms in the present study, consider the state of the
language system before the incoming critical word
was encountered. At this point, the brain will have pre-
activated expected upcoming animacy-based semantic
features, based on the animacy constraints of the prior
verb. Consistent with this idea, we have previously
shown that when a verb constrains for upcoming
animate nouns (e.g. “… he greeted the…”), the brain
produces spatial patterns that are more similar than
when a verb constrains for upcoming inanimate nouns
(e.g. “… he clamped the…”) (Wang et al., 2020).

According to predictive coding, upon encountering a
plausible noun that confirms these prior predictions,
these animacy-based features are reinstated between
300–500 ms within state units. However, any activation
of error units (i.e. prediction error) is immediately sup-
pressed by the prior predictions. This explains why we
found a spatial similarity effect of Animacy (animate >
inanimate) between 300–500 ms on the plausible critical
words (reflecting state activity), even though these
words produced a relatively small event-related N400
response (reflecting a relatively small prediction error
within error units). In contrast, upon encountering an
anomalous noun whose animacy features cannot be
explained by prior predictions, at the same time as
state units are accessing the animacy features associated
with the bottom-up input, error units produce predic-
tion error because this newly encoded semantic infor-
mation is not suppressed by prior predictions. This can
explain why the anomalous inputs produced a larger
N400 evoked response than the plausible inputs.

Responses to the anomalous nouns between 600–
1000ms: divergence between MEG and EEG
findings
In the present study, the implausible nouns were not just
unpredictable; they were anomalous, and therefore
could not be incorporated into the comprehender’s
high-level interpretation between 300–500 ms. When a
linguistic error disrupts the process of comprehension,
this can trigger a number of prolonged processes
between 600–1000 ms. We found that MEG and EEG
diverged in both their univariate and multivariate
responses to the anomalies in this later time window,

raising the possibility that these two techniques were
differentially sensitive to different aspects of this late
error-based activity.

Between 600–1000 ms, MEG detected only a small
evoked response to the anomalies. In previous work,
we source localised this late evoked response to lower-
level cortical regions, providing evidence that it
reflects bottom-up reprocessing of the anomalous input
(Wang et al., 2023). Consistent with this idea, the MEG
multivariate analysis revealed more similar spatial pat-
terns to the anomalous animate than inanimate nouns
within this 600–1000 ms time window. As discussed
above, this mirrors the internal semantic similarity struc-
ture of anomalous input. These findings therefore
suggest that the animacy-based semantic features
associated with the anomalous bottom-up inputs were
re-activated within this later time window, and that
MEG was sensitive to this late bottom-up activity.

In contrast, between 600–1000 ms, the EEG detected
a much larger univariate ERP effect on the anomalies –
the posteriorly distributed semantic P600 ERP com-
ponent (Brothers et al., 2020; Brothers et al., 2022; Kuper-
berg, 2007; Kuperberg et al., 2003; Kuperberg et al., 2020;
Kuperberg et al., under review; van de Meerendonk et al.,
2009). Moreover, within this later time window, the EEG
multivariate effect of Animacy on the anomalous nouns
went in the opposite direction, with more similar pat-
terns observed in the anomalous inanimate than the
anomalous animate condition; that is, within this later
time window, instead of mirroring the internal semantic
similarity structure of observed anomalous animate and
inanimate nouns, these patterns mirrored the semantic
similarity structure of the patterns that were expected,
based on the constraints of the prior verb (e.g. “… he
greeted the… <animate>”, “… he clamped the…
<inanimate>”). These findings suggest that the incorrect
prior predictions were reactivated during this time
window and that EEG was relatively more sensitive
than MEG to this late feedback activity.

The P600 ERP component itself may function to track
these conflicting sources of bottom-up and top-down
information in this late time window. Specifically, we
have recently argued that the P600 reflects a decision
variable that accumulates evidence that the original dis-
ruption in comprehension stemmed from an external
error in the bottom-up input, as opposed to an internal
error in processing (Kuperberg et al., under review). This
type of confidence tracking may play an important role
in ensuring that the brain responds optimally to linguis-
tic errors over multiple time scales. Similar evidence
accumulation decision-making mechanisms have been
linked to the well-known P300 ERP component (the
P3b or pre-decisional centro-parietal positivity; see
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Twomey et al., 2015), which, as noted earlier, shares
several functional properties with the P600 (Coulson
et al., 1998; Osterhout et al., 2012; Sassenhagen et al.,
2014; Sassenhagen & Fiebach, 2019).10 It is therefore par-
ticularly noteworthy that, like the P600, the P300 event-
related response is larger in EEG than in MEG (Sieden-
berg et al., 1996). This may be because these decision-
making mechanisms are implemented within wide-
spread fronto-parietal cortices (Brosnan et al., 2020),
and MEG is relatively insensitive to these sources
(Ahlfors et al., 2010; see Study 2 for discussion).

Better together: synthesising the univariate and
multivariate results of the MEG and EEG datasets
between 600–1000ms
Once again, therefore, the results of these different
approaches complement each other. We again suggest
that this full set of findings can be understood by
appealing to the principles of predictive coding. In the
case of anomalous inputs, however, the predictive
coding algorithm would fail to converge between 300–
500 ms, leading to two downstream consequences
within the later 600–1000 ms time window.

The first consequence is that higher levels of rep-
resentation will fail to produce accurate top-down pre-
dictions that switch off lower-level prediction error.
This can explain why the anomalous bottom-up input
was reprocessed in this later 600–1000 ms time
window (see Wang et al., 2023 for discussion), as
detected by the univariate and multivariate MEG
findings.

The second consequence is that the prior context will
continue to generate inaccurate top-down predictions
based on the preceding verb. For example, in the anom-
alous sentence, “… he greeted the *wires… ”, the brain
would continue to generate predictions of <animate >
features, while in the anomalous sentence, “… he
clamped the *guests…”, the brain would continue to
generative predictions of <inanimate > features. This
can explain why the EEG spatial similarity effect
reflected the internal semantic similarity structure of
these incorrect predictions, rather than that of the
observed anomalous bottom-up anomalous inputs. As
discussed above, the simultaneous activation of conflict-
ing top-down and bottom-up information within this
time window would inform the evidence accumulation
process reflected by the P600 ERP component.

General implications

Our findings have several broad implications that go
beyond the specific set of results reported in this
study. In this final section, we summarise these

implications. We offer three take-home messages, and
provide recommendations for how to effectively use
multivariate together with univariate methods, as well
as MEG together with EEG, to deepen our understanding
of language processing.

Interpret multivariate results in the light of the
large existing univariate ERP and MEG literatures
Our first take-home message is that it is critical to inter-
pret any spatial similarity MEG/EEG results in the light of
the large existing univariate ERP and MEG literatures.
This is because, as we show clearly in the present
study, any multivariate measures estimated using Pear-
son’s r will covary with the magnitude of well-known
event-related components like the N400 and P600.

Perhaps because of the belief that newer multivariate
measures detect “representational information” that is
functionally distinct from the “cognitive process”
detected by event-related responses (see further
below), some multivariate MEG/EEG language studies
make only minimal reference to the ERP/ERF literature.
However, a failure to fully consider this literature not
only misses the opportunity to capitalise on a large
body of existing knowledge, but can also lead to false
inferences about the functional significance of multi-
variate effects. For example, we know from the ERP lit-
erature that the N400 event-related component is
highly sensitive to numerous lexical and semantic vari-
ables (e.g. word frequency: Rugg, 1990; Van Petten &
Kutas, 1990; word concreteness or semantic richness:
Amsel, 2011; Holcomb et al., 1999; Kounios & Holcomb,
1994; Rabovsky et al., 2012). In addition, during sentence
comprehension, the N400 evoked by each incoming
word is highly sensitive to its relationship with the
prior context, including its lexical predictability
(DeLong et al., 2005; Federmeier et al., 2007; Kutas & Hill-
yard, 1984), its plausibility (Kuperberg et al., 2020;
Nieuwland et al., 2020), its semantic overlap with a incor-
rectly predicted word (e.g. Federmeier & Kutas, 1999),
and its semantic association with prior words in the
local context (e.g. Van Petten et al., 1997). All these
event-related effects are likely to be detected by multi-
variate measures that use Pearson’s r. Therefore, when-
ever one sees a multivariate effect between 300–
500 ms following stimulus onset, it is important to con-
sider the possibility that it is driven by the effects of
these variables on the well-known N400 component.

As discussed in detail in the Discussion section of
Study 1, there is no simple way of capturing multivariate
effects that are not driven by univariate effects. We
therefore recommend that, when using Pearson corre-
lations or Pearson distance measures as a similarity
metric, the best way to determine which multivariate
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effects are and are not driven by univariate effects is to
carry out both a multivariate and univariate analysis on
the same dataset (see Haxby et al., 2001 and Aly &
Turk-Browne, 2015, for similar recommendations using
fMRI), ideally using analogous methods (as in the
present study), and qualitatively comparing the spatial
similarity and evoked response time series.

Abandon the assumption of a one-to-one mapping
between analytic approach and functional
interpretation
Our second take-home message is that we should
abandon any assumption of a simple one-to-one
mapping between analytic approach (univariate versus
multivariate) and functional interpretation (“cognitive
process” versus “representational content”). This distinc-
tion was first proposed in the fMRI literature (Krieges-
korte, 2011) where it was assumed that “processing”
equated to the engagement of metabolically demand-
ing cognitive resources that operated upon “represen-
tational information”, which remained static over time.

While this assumption may sometimes be valid for
interpreting the sluggish hemodynamic response
(Jimura & Poldrack, 2012), any clear-cut distinction
between “process” and “representational information”
falls apart when we come to interpret MEG/EEG activity
produced during real-time language comprehension in
which each new piece of information is rapidly
encoded at multiple levels of linguistic representation,
and so, at each time point following stimulus onset,
the activation (encoding) of this information corre-
sponds to its processing. For example, as should be
clear from our discussion of the N400 component,
within a predictive coding framework, the difficulty of
semantic “processing” (or “retrieval” or “access”)
between 300–500 ms corresponds directly to the
amount of unpredicted semantic representational infor-
mation that is being encoded (see Kuperberg, 2016;
Nour Eddine, 2021; Nour Eddine et al., 2023).

We therefore suggest that when interpreting EEG/
MEG data, we should begin with the assumption that
both univariate and multivariate measures can tell us
whether and when the brain encodes information
within new bottom-up input, and that the critical ques-
tion that we should be asking is whether encoding (or,
equivalently accessing or retrieving) this information is,
or is not, accompanied by an overall increase in neural
signal. As we show in the present study, the answer to
this question can only be provided by carrying out
both types of analyses. Our spatial similarity results
alone were unable to tell us which of the effects of
Plausibility or Animacy were accompanied by changes
in response magnitude. It was only through the event-

related analysis that we learned that Plausibility but
not Animacy modulated the amplitude of neural activity
produced between 300–500 ms. This, in turn, provided
important constraints on our theoretical interpretation.

Do not assume that MEG and EEG always reflect
precisely the same underlying neural sources and
mechanisms
Our third take-home message is that we cannot assume
that MEG and EEG results will always converge. In the
present study, this lack of convergence was particularly
clear between 600–1000 ms (but, because of com-
ponent overlap in EEG but not MEG, it can also impact
the earlier 300–500 ms time window, see Discussion in
Study 2; and see also Wang et al., 2023, Supplementary
Materials, Discussion Section 2).

Between 600–1000 ms, MEG and EEG differed in both
the univariate and multivariate effects in the anomalous
condition, providing evidence that the two techniques
were differentially sensitive to distinct neural sources
that were activated in this late time window. This in
turn, provided important theoretical constrains on our
interpretation of the prolonged response produced by
linguistic errors. We suggested that MEG and EEG may
be differentially sensitive to the reprocessing of the
bottom-up input and the re-activation of prior predic-
tions respectively. If future studies confirm that EEG
and MEG are indeed differentially sensitive to feedback
versus feedforward activity within this later time
window, then this would provide essential information
that constrains the interpretation of future investi-
gations using both techniques to study language
comprehension.

Conclusion

In conclusion, our findings suggest that a comprehen-
sive understanding of the neural and computational
basis of language processing can only be achieved
through the combined use of univariate andmultivariate
methods, along with different neuroimaging techniques.
Our results illustrate the importance of interpreting the
results of these different tools together to provide
deeper insights into the complex mechanisms under-
lying language comprehension.

Notes

1. In the MEG literature, the N400 is sometimes referred to
as the M400 or N400m.

2. As noted under Methods, there were small differences
between the animate and inanimate nouns in their
length and frequency. Effects of word length can
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influence earlier ERP components (Hauk & Pulvermuller,
2004; Osterhout et al., 1997; Wydell et al., 2003), and
differences in frequency can modulate the N400 (Dam-
bacher et al., 2006; Payne et al., 2015; Van Petten &
Kutas, 1990). These differences, however, are unlikely
to explain the absence of a univariate effect of
Animacy between 300-500ms.

3. This may include (a) spontaneous ongoing neural
activity, (b) activity stemming from other physiological
sources, and (c) noise from the environment or from
our measurement instruments (Luck, 2014b). We also
note that while spatial similarity and event-related ana-
lyses are sensitive to many of the same sources of
noise, there are some differences: In an event-related
analysis, spontaneous neural activity that is not
phase-locked to an event of interest is always con-
sidered “noise”. In a spatial similarity analysis,
however, non-phase-locked activity can, under certain
circumstances, contribute to increases in spatial simi-
larity. For example, if the phase value of a waveform
measured at channel 1 varies across trials, then the
event-related response at this channel will always be
small. However, if the relative differences in amplitude
across the three channels (e.g. 1 < 2 < 3) are consistent
across trials, then this will give rise to an increase in
spatial similarity.

4. This is because without cross validation, estimates of the
true Euclidean distance become increasingly more inac-
curate (larger) with increases in noise. As discussed
above, this is also true of Pearson’s distance estimates.
However, the Pearson’s distance between two entirely
random patterns has a maximal value of 1 (or, equiva-
lently, a Pearson’s r value of 0), regardless of noise
level. In contrast, the Euclidean distance is non-negative
and unbounded. Therefore, without cross-validation, the
noise inflation of Euclidean distance is greater than that
of the Pearson’s distance. Therefore, without cross-vali-
dation, Euclidean distance values are far less interpret-
able than Pearson’s distance values (see Guggenmos
et al., 2018; Walther et al., 2016 for discussion).

5. We also carried out supplementary analyses to check
that the event-related and spatial similarity effects
were similar between the two EEG datasets. For both
types of analyses, the pattern of findings across the
two datasets was indeed qualitatively similar.

6. Activity is also produced by tangentially orientated
dipoles within the walls of a single sulcus. However,
these dipoles frequently face in opposite directions, can-
celing each other out, and so they are not detected at
the head surface by either MEG or EEG.

7. We note that this interpretation is slightly different from
the one that we offered in our previous ERP study which
used a similar design but a different set of stimuli (Pac-
zynski & Kuperberg, 2011, Experiment 1). In that study,
we also reported a smaller negativity to animate than
inanimate anomalies in the N400 time window, and we
also attributed this difference to the fact that the
animate but not the inanimate anomalies violated
expectations based on the animacy hierarchy. In that
study, we suggested that this led to reduced semantic
processing of the anomalous animate (versus anomalous
inanimate) nouns on the N400 component itself.

However, because in the present investigation, Study 1
showed that the amplitude of the MEG N400 was just
as large to the anomalous animate as to the anomalous
inanimate nouns, we think that a component overlap
explanation for the attenuation of the ERP N400 to the
animate anomalous nouns is more likely.

8. In the earlier 300-500ms time window, the smaller EEG
spatial similarity values for the anomalous animate
(versus anomalous inanimate) nouns can be explained
by the smaller evoked response to these animate con-
tinuations, as a result of an early start of the P600 com-
ponent, as discussed above.

9. In predictive coding, “prediction error” is computed as
an inherent component of the inference algorithm –
the process of inferring semantic features from a
word’s linguistic form. This differs from how prediction
error has been simulated in other computational
models of the N400, where the error is computed
outside the model’s architecture (Fitz & Chang, 2019;
Rabovsky & McRae, 2014). It also differs from compu-
tational models that have simulated the N400 as the
total activity (Cheyette & Plaut, 2017; Laszlo & Plaut,
2012) or the total change in activity produced by a
single set of units (Brouwer et al., 2017; Rabovsky
et al., 2018; see Nour Eddine et al., 2022 for discussion
and review). We also note that, although in the
present study “prediction error” was produced by a lin-
guistic “error” (an anomalous input), a linguistic error is
not necessary to produce prediction error (or an N400)
within a predictive coding framework. According to
this framework, prediction error is produced at the
lexico-semantic level whenever incoming lexico-seman-
tic information cannot be explained by prior lexico-
semantic predictions. This will result in a larger N400
to unexpected but plausible words, compared to
expected words. We have recently argued that, in
the case of anomalous inputs, prediction error is
additionally generated at a higher event level of rep-
resentation because the newly inferred anomalous
event cannot be explained by still higher-level predic-
tions based on longer-term real-world knowledge
(Wang et al., 2023).

10. Note, however, that unlike the P300, which is thought to
index the accumulation of raw evidence to make an
initial decision, we have argued that the P600 reflects
the accumulation of evidence that is gathered after
the initial disruption in comprehension. In this sense,
this component may bear more resemblance to later
positivities within the P300 family of ERP components
(Boldt & Yeung, 2015; Desender et al., 2019; Desender
et al., 2021; Murphy et al., 2015; Steinhauser & Yeung,
2010), which are also thought to track the brain’s confi-
dence in relation to a previous choice (Boldt & Yeung,
2015; Desender et al., 2019; Murphy et al., 2015; see
Desender et al., 2021 for a review).
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