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We used magnetoencephalography (MEG) and event-related potentials (ERPs) to track the time-course and localization of evoked activity
produced by expected, unexpected plausible, and implausible words during incremental language comprehension. We suggest that the full
pattern of results can be explained within a hierarchical predictive coding framework in which increased evoked activity reflects the
activation of residual information that was not already represented at a given level of the fronto-temporal hierarchy (“error” activity).
Between 300 and 500 ms, the three conditions produced progressively larger responses within left temporal cortex (lexico-semantic
prediction error), whereas implausible inputs produced a selectively enhanced response within inferior frontal cortex (prediction error
at the level of the event model). Between 600 and 1,000 ms, unexpected plausible words activated left inferior frontal and middle
temporal cortices (feedback activity that produced top-down error), whereas highly implausible inputs activated left inferior frontal
cortex, posterior fusiform (unsuppressed orthographic prediction error/reprocessing), and medial temporal cortex (possibly supporting
new learning). Therefore, predictive coding may provide a unifying theory that links language comprehension to other domains of
cognition.
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Introduction
One of the most amazing feats of human cognition is our ability
to comprehend language by transforming streams of linguistic
input into a high-level representation of real-world events (an
“event model”; Radvansky and Zacks 2011). Language comprehen-
sion can be understood as a process of “probabilistic inference”:
The use of prior knowledge, encoded within an internal genera-
tive model, to infer the underlying high-level representation that
best “explains” the bottom-up input (Kuperberg and Jaeger 2016).
According to an influential theory of brain function, probabilis-
tic inference is approximated using an optimization algorithm
known as “predictive coding” (Mumford 1992; Rao and Ballard
1999; Friston 2005; Clark 2013; Spratling 2017).

Predictive coding claims that higher levels of the cortical hierar-
chy, representing information over longer spatiotemporal scales,
continually generate top-down predictions of activity at lower
cortical levels, which represents information over shorter spa-
tiotemporal scales. As new bottom-up information becomes avail-
able to lower levels, top-down predictions attempt to “suppress”
the activity produced by these inputs. Any residual (unexplained)
information encoded in the input, i.e. “prediction error,” is then
used to update higher-level representations, allowing them to pro-
duce more accurate predictions. Inference is complete when, over
multiple iterations of the algorithm, prediction error is minimized
across all levels of the cortical hierarchy.

In the language domain, studies of speech perception (Blank
and Davis 2016; Sohoglu and Davis 2020) and visual word-
recognition (Price and Devlin 2011; Heilbron et al. 2020b) have

shown that predictable inputs produce less neural activity
than unpredictable inputs in regions that encode low-level
phonological and orthographic information. This has been
taken as evidence for the suppression of lower-level prediction
error by accurate top-down predictions. An important open
question is whether the principles of hierarchical predictive
coding can also account for the neuroanatomical localization
and timing of evoked neural activity produced during higher-level
language comprehension, which requires us to infer information
represented at multiple time-scales as new linguistic inputs
unfold in real time.

300–500 ms
MEG studies have shown that single words, presented without any
prior context, produce robust event-related (evoked) responses:
Increases in time-locked neural activity, relative to baseline. These
evoked responses begin in early perceptual regions, and are fol-
lowed by subsequent peaks as activity rapidly flows from poste-
rior to anterior regions of ventral and lateral temporal cortices,
and then to inferior frontal and orbitofrontal cortices. Between
300 and 500 ms, the mid- and anterior temporal and inferior
frontal cortices are activated in parallel, particularly over the left
hemisphere (e.g. Dale et al. 2000; Dhond et al., 2001; Halgren
et al. 2002; Marinkovic et al. 2003). This feedforward sweep of
activity propagates to the scalp surface, manifesting in both EEG
and MEG as the N400 waveform, which is thought to reflect the
initial influence of the incoming stimulus on the current state of
semantic memory (Kutas and Federmeier 2011).
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A large body of studies using event-related potentials (ERPs)
has established that an N400 is triggered by each meaningful
content word in a sentence (Van Petten and Kutas 1990, 1991;
Payne et al. 2015). During sentence comprehension, the amplitude
of the N400 is highly sensitive to the lexical predictability of an
incoming word in relation to its prior context (Kutas and Hillyard
1984; DeLong et al. 2005; Federmeier et al. 2007), with expected
words evoking a smaller N400 than unexpected but plausible
words (e.g. “For the sleepover, you should bring a blanket and a
pillow/game”). There is also evidence for an effect of contextual
plausibility on the N400, over and above the effect of lexical
predictability (Kuperberg et al. 2020; Nieuwland et al. 2020), with
unexpected plausible words evoking a smaller N400 than implau-
sible words (e.g. “For the sleepover, you should bring a blanket and
a game/sneeze”). However, it remains unclear which regions in
the fronto-temporal hierarchy contribute to the effects of lexical
predictability and contextual plausibility. Functional magnetic
resonance imaging (fMRI) studies have had difficulty addressing
this question because the sluggish hemodynamic response is
largely insensitive to transient, feedforward neural activity (Furey
et al. 2006), like that reflected by the N400 (Lau et al. 2008; Geukes
et al. 2013; Lau et al. 2013, 2016). Although previous MEG and
intracranial EEG studies have shown that the effects of sentence
context on the N400 can localize to both temporal and inferior
frontal cortices (e.g. Helenius et al. 1998; Halgren et al. 2002; Maess
et al. 2006; Ihara et al. 2007; Heilbron et al. 2020a), none of these
previous studies have separately manipulated lexical predictabil-
ity and contextual plausibility. Determining which levels of the
fronto-temporal hierarchy are modulated by these two factors is
important because it can help distinguish between different neu-
robiological frameworks of language comprehension, including
predictive coding.

One possibility is that the effects of lexical predictability and
contextual plausibility on the N400 both localize to temporal and
inferior frontal regions, with graded increases in activity across
expected, unexpected plausible, and implausible words. This would be
consistent with a recent computational model (Rabovsky et al.
2018) that interprets the N400 as an implicit update in a single
hidden layer that maps directly from lexical inputs to an event
model. Assuming that this single state is distributed across both
frontal and temporal cortices, the more expected the new input,
the smaller the update, and the smaller the evoked response it
should produce across these two regions. We will refer to this as
a “distributed state” account (see Fig. 1A for summary).

A second possibility is that, in plausible sentences, the
N400 effect of lexical predictability localizes to regions of
the left temporal cortex that support lexical processing (i.e.
expected < unexpected = implausible), whereas, in unpredictable
sentences, the N400 effect of contextual plausibility localizes to
the inferior frontal cortex (i.e. expected = unexpected < implausible).
This account is motivated by theories that draw a sharp
distinction between lexico-semantic access (Lau et al. 2008,
2009) and event-level integration (Brothers et al. 2015; Nieuwland
et al. 2020). Unlike the “distributed state” account, it assumes
a hierarchical architecture in which semantic information
associated with individual words (lexico-semantic information)
is encoded at a shorter time-scale at lower levels of the fronto-
temporal hierarchy (temporal cortex; Price 2012), whereas a full
representation of the prior context is encoded and maintained
over a longer time span within higher-level regions (e.g. the
prefrontal cortex; Lerner et al. 2011). According to this framework,
in plausible sentences, it should be easier to access lower-
level lexico-semantic representations of expected than unexpected

plausible words because prior lexico-semantic predictions would
have already pre-activated these representations within the left
temporal cortex (see Wang et al. 2018). This would be consistent
with MEG and intracranial studies showing that the semantic
priming effect localizes to regions within the left temporal cortex
(Nobre and McCarthy 1995; Lau et al. 2013; Lau and Nguyen
2015), and that this facilitation effect is enhanced when top-down
prediction is encouraged (Lau et al. 2016). In contrast, according
to this account, the effect of contextual implausibility is not
driven by differences in prior lexico-semantic prediction. Instead,
inferring an implausible event leads to additional difficulties in
integrating it with real-world knowledge, with this integration
being mediated by the left inferior frontal cortex (Hagoort et al.
2004). We will refer to this as the “prediction-integration” account1

(see Fig. 1B for summary).
A third possibility is that the effects of lexical predictability

and contextual plausibility on the N400 localize only to temporal
regions (expected < unexpected plausible < implausible). This
account also assumes a hierarchical architecture, with the N400
reflecting activity at the lower lexico-semantic level. In contrast
to the “prediction-integration” account, however, it assumes that
comprehenders not only predict semantic features associated
with specific lexical items (lexico-semantic predictions), but
also semantic features that are associated with whole semantic
categories (e.g. <animate> vs. <inanimate>). When new input
becomes available, these semantic-level predictions will also
serve to facilitate the retrieval/access of unexpected plausible (vs.
implausible) lexico-semantic representations. Therefore, on this
account, all contextual effects on incoming words—both lexical
predictability and contextual plausibility—are hypothesized to
“bottom-out” at the lower lexico-semantic level of representation
(MacDonald et al. 1994; Smith and Levy 2013). Updates of higher-
level states, which are maintained over a longer time-scale,
are assumed not to influence the N400, although the precise
reasons for this are not usually specified. We will refer to this
account as the “lexico-semantic facilitation” account (see Fig. 1C
for summary).

Finally, hierarchical predictive coding predicts a fourth possible
pattern: Graded N400 modulation across the three conditions
within temporal regions, but nongraded modulation within the
inferior frontal cortex (see Fig. 1D). Similar to the “prediction-
integration” and the “lexico-semantic” facilitation accounts,
predictive coding assumes a hierarchical architecture. Here, we
assume that, during language comprehension, lexico-semantic
information associated with individual words is encoded at a
shorter time-scale within the temporal cortex, and that a higher-
level event model is represented over a longer time-scale within
the prefrontal cortex.

Within the temporal cortex, predictive coding posits that the
prior context generates predictions that pre-activate semantic
features, both of expected individual words and whole semantic
categories, similar to the “lexico-semantic facilitation” account.
Therefore, predictive coding also predicts progressively larger
N400 responses across the three conditions within the temporal
cortex (expected < unexpected plausible < implausible). However,
instead of directly attributing these evoked effects to changes
induced by the input in lexico-semantic states, predictive
coding attributes them to differences in the magnitude of
lexico-semantic prediction error2—activity produced by a distinct
population of lexico-semantic “error units” that cannot be
suppressed/explained by top-down predictions from the higher-
level event model (see Fig. 2, left; for computational simulations
see Nour Eddine 2021; Nour Eddine et al. in press).
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Fig. 1. Hypothesized patterns of evoked N400 modulation across expected, unexpected plausible, and implausible words within temporal and inferior frontal
cortices in four general frameworks of language comprehension. A). According to a “distributed state” account, the N400 reflects the degree of update
induced by new inputs within a single state that is distributed across the fronto-temporal cortical hierarchy. It therefore predicts graded N400 modulation
(expected < unexpected plausible < implausible) within both temporal and inferior frontal cortices. B) A “prediction-integration” account distinguishes
between lexical facilitation resulting from lexical-level predictions in plausible sentences and event-level integration in implausible sentences. Within
the temporal cortex, this framework predicts a reduced N400 only to expected words (expected < unexpected plausible = implausible), and, within the
inferior frontal cortex, it predicts an enhanced N400 only to implausible words (expected = unexpected plausible < implausible). C) According to a “lexico-
semantic facilitation” account, the N400 reflects the degree to which processing of an incoming word is facilitated at a lower lexico-semantic level of
representation. It therefore predicts graded increases in the N400 response across the three conditions within the temporal cortex, but no differences in
the N400 within inferior frontal cortex. D) “Predictive coding” posits that the amplitude of the N400 produced at any given level of the cortical hierarchy
reflects the magnitude of prediction error, i.e. activity within error units that is not suppressed/explained by top-down predictions generated by state
units at the level above. It predicts graded modulation of the N400 within the temporal cortex (expected < unexpected plausible < implausible), reflecting
graded increases in the magnitude of lexico-semantic prediction error, and an enhanced N400 to implausible words within the inferior frontal cortex
(expected = unexpected plausible < implausible), reflecting a failure to suppress higher-level prediction error produced at the level of the event model.

Within the inferior frontal cortex, predictive coding attributes
differences in amplitude of the N400 to differences in the
magnitude of prediction error produced at the higher level of the
event model, i.e. activity within higher-level error units that is not
suppressed by predictions based on real-world knowledge (see
Fig. 2, right). Within this framework, there should be no difference
in the magnitude of higher-level prediction error produced by
expected and unexpected plausible inputs because, in both cases,
the event model is plausible (i.e. consistent with real-world
knowledge), and so any higher-level prediction error/evoked
response is suppressed. However, in the case of implausible inputs,
higher-level prediction error is no longer suppressed (see Rao and
Ballard 1999). Therefore, predictive coding predicts an enhanced
N400 response in the inferior frontal cortex only to implausible
inputs (expected = unexpected plausible < implausible).

600–1,000 ms
Beyond the N400 time-window, previous ERP studies have shown
that unpredicted inputs can also produce additional evoked
responses between 600 and 1,000 ms, particularly in rich, schema-
constraining contexts. This later-stage activity manifests at the
scalp surface as a set of positive-going waveforms between 600
and 1,000 ms, with different scalp distributions depending on
whether the interpretation is plausible or implausible (Van Petten
and Luka 2012; DeLong et al. 2014; Brothers et al. 2020; Kuperberg
et al. 2020). Unexpected words that yield plausible interpretations
produce a late frontally-distributed positivity (Federmeier et al.
2007; Brothers et al. 2020; Kuperberg et al. 2020), whereas
anomalous inputs that yield highly implausible interpretations
produce a late posteriorly-distributed positivity, also known as the
semantic P600 (Kuperberg et al. 2003; Kuperberg 2007; van de
Meerendonk et al. 2009; Brothers et al. 2020; Kuperberg et al.
2020).

Various theoretical proposals have been offered to explain
these late ERP responses. For example, it has been proposed
that the late frontal positivity reflects lexical inhibition (Ness
and Meltzer-Asscher 2018), or a large late shift of the event
model (Brothers et al. 2020; Kuperberg et al. 2020), whereas
the late posterior positivity/P600 has been linked to reprocessing
of the perceptual input that is triggered by linguistic conflict
(van de Meerendonk et al. 2009; Brothers et al. 2020; Kuperberg
et al. 2020; Brothers et al. 2021). However, we know very little about
the neuroanatomical sources of this later-stage evoked activity.
Although fMRI is more sensitive to later-stage feedback activity
than earlier stimulus-driven feedforward transient responses
(Furey et al. 2006; like the N400), the sluggish hemodynamic
response also captures much later activity that extends beyond
1,000 ms, and that is likely to reflect processing of subsequent
words and offline reflections about the meaning of a sentence
as a whole. Even though several MEG and intracranial studies
have explored the effects of semantic context during sentence
comprehension, they have generally failed to report effects
beyond the N400 time-window.

Hierarchical predictive coding provides a biologically-motivated
computational framework for understanding these late evoked
responses. Within a nonstationary hierarchical generative
framework (cf. Qian et al. 2012; Gershman et al. 2014), new
information that is inconsistent with the comprehender’s prior
event model will induce attempts to retrieve new schema from
long-term memory (Franklin et al. 2020; Kuperberg 2021). In
the case of an unexpected plausible input, this retrieval will
be successful, resulting in the generation of new top-down
predictions. Predictive coding posits that, as these new predictions
flow down the cortical hierarchy between 600 and 1,000 ms, they
will produce top-down error, i.e. they will activate error units that
carry residual top-down information that is not already encoded
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Fig. 2. Between 300 and 500 ms (N400): Proposed predictive coding across the left fronto-temporal hierarchy. In rich, constraining discourse contexts,
top-down predictions, based on stored real-world and linguistic knowledge, are propagated down the cortical hierarchy (faint blue diagonal arrows)
before new bottom-up input becomes available. Lexico-semantic level (pink): Within regions of the left temporal cortex that support lexico-semantic
processing, the lexico-semantic representation of the incoming word is inferred throughout the N400 time-window within “state units” (STi-1 → STi).
Within a distinct set of “error units", residual lexico-semantic information that is not suppressed (cannot be explained) by the top-down predictions
(PE = max(0, ST–Pr), simplified in the figure as PE = ST–Pr), produces lexico-semantic prediction error, which manifests as the evoked N400 response.
Lexico-semantic prediction error, and evoked activity within left temporal cortex is therefore smallest to expected words (e.g. “swimmers,” not shown),
larger to unexpected plausible words (e.g. “trainees,” left), where some semantic features (e.g. <animate>) were predicted, and largest to implausible words
(e.g. “drawers,” right) where no semantic features were predicted. Event model (green): Throughout the N400 time-window, lexico-semantic prediction
error passes up to left inferior frontal cortex (red arrows), where it induces updates of the higher-level event model. Unexpected plausible (left): These
updates yield a plausible high-level event model that is congruent with predictions about the possibility/plausibility of real-world events. Therefore,
higher-level prediction error is suppressed, and the evoked response within left inferior frontal cortex is no larger than to expected inputs. In addition, the
newly-updated event model (STi) now generates correct top-down predictions (blue curly arrow) that “switch off”/suppress lower-level lexico-semantic
prediction error, leading to the reduction of the evoked response within left temporal cortex at the end of the N400 time-window. Implausible (right):
Updates of the event model yield a highly implausible interpretation (e.g. <lifeguards cautioned drawers>) that cannot be explained by real-world
knowledge predictions, resulting in a large higher-level prediction error at the level of the event model, and an enhanced evoked response within
left inferior frontal cortex (red arrow). Moreover, because it is more difficult to converge on an implausible interpretation, top-down lexico-semantic
predictions will be less accurate and less likely to suppress lower-level lexico-semantic prediction error (blue dotted curly arrow), further enhancing
and prolonging the evoked response within left temporal cortex.

within prior states (see Rao and Ballard 1997, 1999), both at the
level of the event model and at the lexico-semantic level. This
framework therefore predicts that, relative to expected inputs,
unexpected plausible inputs will produce late evoked effects both
within inferior frontal and temporal cortices (see Fig. 3, left).

In contrast, in the case of a highly implausible input that
yields an anomalous interpretation (e.g. “...they cautioned the
∗drawers”), the brain is unable to retrieve new schema, and it will
therefore continue to generate incorrect top-down predictions.
This will result in a failure to switch off prediction error at still
lower levels of the cortical hierarchy that encode lower-level
linguistic representations. This account therefore predicts that
highly implausible words will produce an enhanced later evoked
response within lower-level regions such as the posterior fusiform
cortex, which supports sublexical orthographic processing
(Price and Devlin 2011; Heilbron et al. 2020b), i.e. orthographic
reprocessing (see Fig. 3, right).

This study
Here, we used MEG and ERPs to track the time-course and
localization of evoked neural activity, produced in the first
1,000 ms following word onset, during incremental language

comprehension. Participants read predictable multi-sentence
discourse contexts, e.g. “The lifeguards received a report of
sharks right near the beach. Their immediate concern was to
prevent any incidents in the sea. Hence, they cautioned the . . .

”. Critical words in the final sentence were (i) expected (e.g.
“swimmers”), (ii) unexpected but plausible (e.g. “trainees”), or (iii)
highly implausible (e.g. “drawers”).3 To examine the full time-
course and neuroanatomical localization of the evoked responses
produced by each condition, we carried out a distributed
source-localization analysis of the MEG data, which is relatively
undistorted by conductivities of the skull and scalp. To test our a
priori hypotheses, we carried out planned comparisons between
each pair of conditions across a left-lateralized search region
where we expected effects to be maximal (particularly the effects
of lexical predictability, see Federmeier 2022), and within three
200 ms time-windows of interest (300–500 ms, corresponding
to the N400 time-window, and 600–800 ms and 800–1,000 ms,
corresponding to the first and second halves of the time-window
associated with the late positivity ERP effects). We also report
activity at every 100 ms across both hemispheres (left hemisphere
findings are shown in the Results section, and right hemisphere
results are shown in Supplementary Materials).
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Fig. 3. Between 600 and 1,000 ms: Proposed predictive coding across the left fronto-temporal hierarchy. Unexpected plausible (left panel). A) The plausible
event inferred between 300 and 500 ms (e.g. <lifeguards cautioned trainees>) is out of keeping with the comprehender’s high confidence beliefs in the
prior event model, previously inferred from the discourse context. This triggers the retrieval of new schema from long-term memory between 600 and
1,000 ms (gray curly arrow), which generate new predictions (blue diagonal arrow). B) Event model: In left inferior frontal cortex, residual information
within the new predictions that cannot be explained by the prior event model produces “high-level top-down error” within the higher-level error units
(max(0, Pr–ST) = TdE, simplified in the figure as Pr–ST = TdE), which manifests as a late evoked response in this region. This induces a large top-down
shift of the event model within the state units (STi → STi + 1), which, in turn, generates new predictions (blue diagonal arrow). C) Lexico-semantic
level: In left temporal cortex, residual information within the new top-down predictions that cannot be explained by the prior lexico-semantic state
produces “top-down lexico-semantic error” within the error units, which manifests as a late evoked response in this region, and induces a top-down
lexico-semantic shift within the state units. This produces orthographic predictions (blue curly arrow) that continue to suppress orthographic prediction
error at the level below D). Implausible (right panel): A) There are no stored schemas within memory that can explain the implausible/impossible input
(black cross). Therefore, between 600 and 1,000 ms, incorrect top-down predictions continue to be generated based on the prior context (blue diagonal
arrow). B) Event model: In left inferior frontal cortex, previous event predictions (e.g. <lifeguard cautioned swimmers>) fail to match the implausible
event inferred in the N400 time-window (<lifeguards cautioned drawers>), producing “top-down event error” within the error units and a late evoked
response within this region. This induces a top-down shift to a plausible event (<lifeguard cautioned swimmers>), which generates new lexico-semantic
predictions. C) Lexico-semantic level: In left temporal cortex, these predictions (“swimmers", <animate>) are incompatible with the lexico-semantic
state inferred in the N400 time-window (“drawers", <inanimate>), resulting in a destabilization of this lexico-semantic state (indicated with a “?”), and
the production of inaccurate orthographic predictions that are passed down to the level below (blue curly dotted arrow). D) Orthographic level: Within
left posterior fusiform cortex, the inaccurate orthographic predictions fail to suppress prediction error produced by the orthographic state (d-r-a-w-e-r-s),
resulting in a late evoked response (reprocessing).

Finally, in addition to collecting MEG data, we also col-
lected EEG data simultaneously. This was important because
MEG and EEG do not capture precisely the same underlying
signal (Ahlfors et al. 2010; see Supplementary Materials for
further discussion). Therefore, by collecting EEG data using
the same stimuli and in the same participants, we were able
to replicate previous ERP findings (Kuperberg et al. 2020), and
link them to the source-localized evoked effects detected by
MEG.

Materials and methods
Materials
Participants read three types of 3-sentence discourse scenarios,
each with a constraining context, and a critical noun in the third
sentence: (i) Expected, in which the critical word was predictable;
(ii) Unexpected plausible, in which the critical word was plausible
but unpredictable because it was out of keeping with the schema
set up by the prior context; and (iii) Implausible, in which the
critical word violated the animacy constraints of the preceding
verb (which constrained either for an animate or an inanimate
noun).

The stimuli were based on three of the conditions used in a
previous ERP study (Kuperberg et al. 2020). A full description is
provided there as well as in Supplementary Materials. Briefly, the
discourse contexts of each scenario were constraining (average
cloze probability of the most probable word: 68%), as quantified
in a cloze norming study that was carried out in participants
who were recruited through Amazon Mechanical Turk. These
contextual constraints came from the entirety of the discourse
context—the first two sentences plus the first few words of the
third sentence before the critical word. In all scenarios, these first
few words of the third sentence included an adjunct phrase of 1–4
words, followed by a pronominal subject that referred back to the
first two sentences, a verb and a determiner.

To create the expected scenarios, each context was paired with
the noun with the highest cloze probability for that context. To
create the unexpected plausible scenarios, each context was paired
with a noun of zero (or very low) cloze probability, but that was
still plausible in relation to this context. To create the implausible
scenarios, each context was paired with a noun that violated
the animacy constraints of the preceding verb, see Table 1. In
all scenarios, the critical noun was followed by three additional
words to complete the sentence.
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Table 1. Example of each experimental condition, together with stimuli characteristics.

Prior discourse-constraining context: “The lifeguards received a report of sharks right near the beach. Their immediate concern was to prevent any
incidents in the sea. Hence, they cautioned the . . . ”

Scenario type Critical word Constrainta Clozeb SSVc Length Freq.d OLDe Conc.f

Expected swimmers . . . 69%
(14%)

69%
(14%)

0.18
(0.18)

5.69
(1.60)

1.53
(0.66)

1.93
(0.56)

4.30
(0.69)

Unexpected
plausible

trainees... 69%
(14%)

0.1%
(0.5%)

0.01
(0.06)

7.46
(2.22)

0.61
(0.88)

2.61
(0.86)

4.15
(0.69)

Implausible drawers . . . 66%
(16%)

0%
(0%)

0.01
(0.05)

7.11
(2.04)

0.81
(0.85)

2.47
(0.81)

4.21
(0.66)

The critical words (underlined here although not in the experiment itself) were followed by three additional words, indicated here with three dots. Means are
shown with the standard deviations in parentheses. Length: Number of letters.aThe lexical constraint of each discourse context was calculated by identifying
the most common completion across participants who saw that context in a cloze norming study (see Supplementary Materials), and tallying the proportion of
participants who provided this completion.bCloze probabilities of critical words were calculated based on the percentage of respondents in the cloze norming
study who provided the critical noun.cSSV: Semantic similarity values, quantifying the semantic relatedness between the critical words and the “bag of words”
within the prior contexts, based on latent semantic analysis.dFreq.: Log frequency values of critical words, retrieved from the English Lexicon Project.eOLD:
Orthographic Levenshtein Distance values of critical words, retrieved from the English Lexicon Project.fConc.: Concreteness ratings of critical words (Brysbaert
et al. 2014).

When constructing these materials, we attempted to minimize
the possibility of bottom-up priming between words in the prior
context and the critical word. First, the critical noun and the
preceding verb were never strongly associated, as confirmed in a
separate cloze norming study (described in Kuperberg et al. 2020,
see pages 17–18). In that cloze norming study, participants pro-
vided continuations for very short sentence contexts constructed
around the verb (proper name + verb + determiner, e.g. “Jane
cautioned the . . . ”). Critical nouns were provided only rarely as a
completion (mean cloze = 6%, standard deviations, SD = 7%). This
meant that, in the expected condition of the present study, the
critical word was separated from any semantically related words
in the prior discourse by a sentence boundary (see Van Petten
et al. 1997 for evidence that purely associative priming between
individual pairs of words is short-lived, and likely plays a minimal
role in driving discourse contextual effects on the N400).

Second, we carefully matched the unexpected plausible and
implausible conditions on the degree of semantic relatedness
between the critical word and the full “bag of words” in the
prior context, operationalized using semantic similarity values,
extracted using latent semantic analysis (Landauer and Dumais
1997), see Table 1 (t(248) = 0.09, P = 0.93, d = 0.01).

Each list contained 25 expected, 25 unexpected plausible, and 50
implausible scenarios. This ensured that each participant saw an
equal proportion of plausible and implausible scenarios. Con-
ditions were counterbalanced across lists such that, across all
participants, (i) the same 25 discourse contexts appeared in all
three conditions, but no individual saw the same context more
than once, and (ii) the same 25 critical words appeared in the 25
unexpected plausible scenarios and 25 of the implausible scenarios,
but no individual saw this word more than once. We made the
a priori decision to include all 50 implausible scenarios in our
main analyses in order to maximize power to source-localized
effects (see below). As a byproduct of counterbalancing the same
high constraint contexts across the three conditions, the crit-
ical words in the expected scenarios had fewer letters, smaller
orthographic neighborhoods, and were more frequent than in
the other two conditions (all ts > 5, Ps < 0.001, ds > 0.54), see Sup-
plementary Materials for an additional analysis that addresses
potential concerns regarding these differences. However, all these
lexical features were matched between the unexpected plausible
and the implausible conditions (all ts < 1.74, Ps > 0.08, ds < 0.16), see
Table 1.

As discussed in Supplementary Materials, each list additionally
included 100 scenarios with less constraining contexts (again,
50% plausible and 50% implausible). The 50 low constraint
implausible scenarios served as fillers, and the 50 low constraint
plausible scenarios served as a fourth experimental condition.
In the present study, we focused on the three high constraint
conditions, which were perfectly matched prior to the onset of
the critical word. Analyses that directly contrast the expected, high
constraint plausible, and low constraint plausible words will be
reported in a separate manuscript.

Overall procedure
Participants took part in two separate experimental sessions: one
in which we simultaneously collected MEG/EEG data, and one
in which we collected structural and functional MRI data. The
present manuscript focuses on the EEG and MEG datasets. Below,
we describe the acquisition and analysis of the MEG/EEG data, as
well as the structural MRI data, which was used to constrain MEG
source-localization. A report of the fMRI dataset, together with
detailed comparisons with the EEG/MEG dataset, will appear in
a separate manuscript.

Participants
Thirty-three participants took part, but one MEG/EEG dataset
was excluded because of technical problems. Here, we report the
results of 32 MEG/EEG datasets (16 females, mean age: 23.4; range:
18–35). All participants were native speakers of English (with no
other language exposure before the age of 5), were right-handed,
and had normal or corrected-to-normal vision. All were screened
to exclude past or present psychiatric and neurological disorders,
and none were taking medication affecting the Central Nervous
System. The study was approved by the Mass. General Brigham
Institutional Review Board (IRB), and written informed consent
was obtained from all participants.

Stimuli presentation and task
Stimuli were presented using PsychoPy 1.83 software and pro-
jected on to a screen in white Arial font (size: 0.1 of the screen
height) on a black background. On each trial, the first two sen-
tences appeared in full (each for 3,900 ms, 100 ms interstimulus
interval, ISI), followed by a fixation (a white “++++”), which was
presented for 550 ms, followed by a 100 ms ISI. Then the third
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sentence was presented word by word (each word for 450 ms, 100
ms ISI).

Participants’ task was to judge whether or not the scenario
“made sense” by pressing one of two buttons after seeing a “?”,
which appeared after each scenario (1,400 ms with a 100 ms
ISI). Response fingers were counterbalanced across participants.
This task encouraged active coherence monitoring during online
comprehension and was intended to ensure that comprehenders
detected the anomalies, which is necessary to produce a late pos-
terior positivity/P600 response (Sanford et al. 2011). In addition,
following 24/200 trials (distributed semi-randomly), participants
answered a “YES/NO” comprehension question that appeared on
the screen for 1,900 ms (100 ms ISI). This encouraged participants
to comprehend the scenarios as a whole, rather than focusing on
only the third sentence in which the anomalies appeared.

Following each trial, a blank screen was presented with a
variable duration that ranged from 100 to 500 ms. This was then
followed by a green fixation (++++) for a duration of 900 ms,
followed by an ISI of 100 ms. These green fixations were used
to estimate the noise covariance for the MEG source-localization
(see below). To ensure precise time-locking of stimuli, we used
frame-based timing, which synced stimulus presentation to the
frame refresh rate of the monitor (for example, a 450 ms word
presentation would be displayed for exactly 27 frames on our 60
Hz monitor).

Stimuli were presented in 8 blocks, each with 25 scenarios.
Blocks were presented in random order in each participant. Par-
ticipants took part in a short practice session before the formal
experiment to gain familiarity with the stimulus presentation and
tasks.

Data acquisition
MEG and EEG data acquisition
Participants sat inside a magnetically shielded room (IMEDCO AG,
Switzerland). The MEG data were acquired with a Neuromag Vec-
torView system (Elekta-Neuromag Oy, Finland) with 306 sensors—
102 triplets, with each triplet comprising two orthogonal planar
gradiometers and one magnetometer. The EEG data were acquired
at the same time using a 70-channel MEG-compatible scalp elec-
trode system (BrainProducts, München), and referenced to an
electrode placed on the left mastoid. An electrode was also placed
on the right mastoid and a ground electrode was placed on the
left collarbone. Electrooculogram (EOG) data were collected with
bipolar recordings: Vertical EOG electrodes were placed above and
below the left eye, and horizontal EOG electrodes were placed
on the outer canthus of each eye. ECG data were also collected
with bipolar recordings: electrocardiogram (ECG) electrodes were
placed a few centimeters under the left and right collarbones.
Impedances were kept at <20 kΩ at all scalp sites, at <10 kΩ at
mastoid sites, and at <30 kΩ at EOG and ECG sites. Both MEG and
EEG data were acquired with an online band-pass filter of 0.03–
300 Hz and were continuously sampled at 1,000 Hz.

To record the head position relative to the MEG sensor array for
later co-registration of the MEG and MRI coordinate frames, the
locations of three fiduciary points (nasion and two auricular), four
head position indicator coils, all EEG electrodes, and at least 100
additional points, were digitized using a 3Space Fastrak Polhemus
digitizer, integrated with the Vectorview system.

Structural MRI data acquisition
In order to create participant-specific head model for MEG source-
localization, we acquired structural MRIs using a 3T Siemens
Trio scanner with a 32-channel head coil for all participants.

T1-weighted high-resolution structural images were obtained
using the following parameters: 1-mm isotropic multi-echo
magnetization-prepared rapid gradient-echo, MP-RAGE; time to
repetition (TR): 2.53 s; flip angle: 7◦; and 4 echoes with TE: 1.69,
3.55, 5.41, and 7.27 ms.

ERP analysis
EEG data were analyzed using the Fieldtrip software package
(Oostenveld et al. 2011) in the Matlab environment. EEG channels
with excessive noise (7 out of the 70 channels, on average) were
visually identified and marked as bad channels. We then applied a
low band-pass filter (30 Hz), down sampled the EEG data to 500 Hz,
and segmented the epochs from −2,600 to 1,400 ms, relative to
the onset of the critical words. After that, we visualized the data
in summary mode within the Fieldtrip toolbox to identify the
trials that showed high variance across channels. These trials
were then removed from subsequent analysis. We then carried out
an independent component analysis (ICA) to remove ICA compo-
nents associated with eye-movement (one component on average
was removed per participant). Finally, we visualized the artifact-
corrected trials, and removed any additional trials with residual
artifact. On average, 6.5% of trials were removed from each con-
dition (equally distributed across the 3 conditions: F(2,62) = 1.40,
P = 0.26, η2 = 0.048), yielding, on average, 23 trials in the expected
and unexpected plausible conditions, and 46 trials in the implausible
condition. Finally, the data of bad channels were interpolated
using spherical spline interpolation (Perrin et al. 1989). In each
participant, at each site, we then calculated ERPs, time-locked to
the onset of critical words, in each of the 3 conditions, applying a
−100 ms pre-stimulus baseline.

We next averaged these voltages across all time points and
electrode sites within each of three spatiotemporal regions of
interest (ROIs) that were selected, a priori, to capture the N400,
the late frontal positivity and the late posterior positivity/P600
ERP components (Kuperberg et al. 2020). The N400 was opera-
tionalized as the average voltage across 10 electrode sites within
a central region (Cz, C1, C2, C3, C4, CPz, CP1, CP2, CP3, and CP4),
averaged across all sampling points between 300 and 500 ms; the
late frontal positivity was operationalized as the average voltage
across 8 electrode sites within a prefrontal region (FPz, FP1, FP2,
FP3, FP4, AFz, AF3, and AF4), averaged across sampling points
between 600 and 1,000 ms; the late posterior positivity/P600 was
operationalized as the average voltage across 11 electrode sites
within a posterior region (Pz, P1, P2, P3, P4, POz, PO3, PO4, Oz,
O1, and O2), averaged across sampling points between 600 and
1,000 ms. We carried out planned statistical comparisons between
each pair of conditions. We also report post-hoc ERP analyses
across an earlier 200–300-ms time-window in Supplementary
Materials.

MEG analysis
MEG preprocessing, individual averaging, and sensor-level
visualization
MEG data were analyzed using version 2.7.4 of the minimum
norms estimate (MNE) software package in Python (Gramfort et al.
2014). In each participant, in each run, MEG sensors with excessive
noise were visually identified and removed from further analysis.
This resulted in the removal of 7 (on average) of the 306 MEG
sensors. Signal-space projection (SSP) correction was used to cor-
rect for ECG artifact. Trials with eye-movement and blink artifacts
were automatically removed (Gramfort et al. 2014). Then, after
applying a band-pass filter at 0.1–30 Hz, we segmented epochs
from −100 to 1,000 ms, relative to the onset of the critical words.
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We removed epochs with additional artifact, as assessed using a
peak-to-peak detection algorithm (the pre-specified cutoff for the
maximal amplitude range was 4 × 10−10 T/m for the gradiome-
ter sensors and 4 × 10−12 T for the magnetometer sensors). On
average, 6.7% trials in each condition were removed (equally dis-
tributed across the 3 conditions: F(2,62) = 0.87, P = 0.42, η2 = 0.027),
yielding, on average, 21 artifact-free trials in the expected and
unexpected plausible conditions, and 42 artifact-free trials in the
implausible condition.

In each participant, in each block, at each magnetometer sen-
sor and at each of the two gradiometers at each site, we cal-
culated event-related fields (ERFs), time-locked to the onset of
critical words in each of the three conditions, applying a −100-
ms pre-stimulus baseline. We averaged the ERFs across blocks
in sensor space, interpolating any bad sensors using spherical
spline interpolation (Perrin et al. 1989). We created gradiometer
and magnetometer sensor maps to visualize the topographic
distribution of ERFs across the scalp. In creating the gradiometer
maps, we used the root mean square of the ERFs produced by the
two gradiometers at each site.

MEG source-localization in individual participants
Each participant’s cortical surface was first reconstructed from
their structural T1 MP-RAGE image using the FreeSurfer soft-
ware package developed at the Martinos Center, Charlestown,
MA (http://surfer.nmr.mgh.harvard.edu). We used MNE-Python
(Gramfort et al. 2014) to estimate the sources of the ERFs evoked
by critical words in each of the 3 conditions, on each participant’s
reconstructed cortical surface using minimum-norm estimation
(MNE; Hämäläinen and Sarvas 1989).

In order to calculate the inverse operator in each participant—
the transformation that estimates the underlying neuroanatom-
ical sources for a given spatial distribution of activity in sensor
space—we first needed to construct a noise-covariance matrix
of each participant’s MEG sensor-level data, as well as a forward
model in each participant (the model that predicts the pattern of
sensor activity that would be produced by all dipoles within the
source space).

To construct the noise-covariance matrix in each participant,
we used 650 ms of MEG sensor-level data recorded during the
presentation of the green inter-trial fixations (we used an epoch
from 100 to 750 ms, which cut-off MEG data measured at the
onset and offset of these fixations in order to avoid onset and
offset evoked responses). We concatenated these fixations across
blocks. To construct the forward model in each participant, we
needed to (i) define the source space—the location, number, and
spacing of dipoles, (ii) create a Boundary Element Model (BEM),
which describes the geometry of the head and the conductivities
of the different tissues, and (iii) specify the MEG-MRI coordinate
transformation—the location of MEG sensors in relation to the
head surface.

The source space was defined on the white matter surface of
each participant’s reconstructed MRI and constituted 4,098 ver-
tices per hemisphere, with three orthogonally-orientated dipoles
at each vertex (two tangential and one perpendicular to the corti-
cal surface). We defined these vertices using a grid that decimated
the surface into meshes, with a spacing of 4.9 mm between adja-
cent locations (spacing: “oct6”). We created a single compartment
BEM by first stripping the outer non-brain tissue (skull and scalp)
from the pial surface using the watershed algorithm in FreeSurfer,
and then applying a single conductivity parameter to all brain
tissue bounded by the inner skull. We specified the location of
the MEG sensors in relation to the head surface by manually

aligning the fiducial points and 3D digitizer (Polhemus) data with
the scalp surface triangulation created in FreeSurfer, using the
mne_analyze tool (Gramfort et al. 2014).

We then calculated the inverse operator in each participant,
setting two additional constraints. First, we set a loose constraint
on the relative weighting of tangential and perpendicular dipole
orientations within the source space (loose = 0.2). Second, we set
a constraint on the relative weighting of superficial and deep
neuroanatomical sources (depth = 0.8) in order to increase the
likelihood that the minimum-norm estimates would detect deep
sources.

We then applied each participant’s inverse operator to the
ERFs of all magnetometer and gradiometer sensors calculated
within each block. We estimated activity at the dipoles that
were orientated perpendicular to the cortical surface at each
vertex (pick_ori = “normal”). Each of these perpendicular dipoles
had both a positive and a negative value, which indicated
whether the currents were outgoing or ingoing respectively. We
chose to retain the two polarities of each estimated dipole for
further analyses for two reasons. First, this approach allowed
us to include all trials in each of our 3 conditions, thereby
maximizing power without inflating our estimate of noise in
the conditions with more trials (if we had chosen to simply
estimate the magnitude of each dipole by squaring the positive
and negative values to yield positively-signed estimates, we would
have artificially inflated the noise estimates in the implausible
conditions, which had twice as many trials as the expected and the
unexpected plausible conditions). Second, by retaining this polarity
information, we were able to determine whether any statistical
differences between conditions were driven by differences in the
magnitude and/or differences in the polarity of the dipoles evoked
in each condition (see Supplementary Materials for further
discussion).

Then, for each condition in each block, we computed noise-
normalized dynamic Statistical Parametric Maps (dSPMs; Dale
et al. 2000) on each participant’s cortical surface at each time
point, and averaged these values across blocks within each par-
ticipant. Finally, the source estimates for each participant were
morphed on the FreeSurfer average brain, “fsaverage” (Fischl et al.
1999), for group averaging and statistical analysis.

Statistical analysis of MEG source-level evoked activity
To statistically analyze the source-localized evoked MEG responses,
we carried out pairwise t-tests between each pair of conditions
on the signed estimated dSPM values at each sampling point
from 300 to 1,000 ms after critical word onset. Pairwise t-tests
were calculated at each vertex in source space, over a large left-
lateralized search region where we expected effects to be maximal
(particularly the effects of lexical predictability, see Federmeier
2022). This search area included left lateral temporal cortex, left
ventral temporal cortex, left medial temporal cortex, left lateral
parietal cortex, left lateral frontal cortex, and left medial frontal
cortex, and was defined on the Desikan-Killiany Atlas (Desikan
et al. 2006; Supplementary Fig. 1A, see online supplementary
material for a color version of this figure).

We used permutation-based cluster-mass procedures (Maris
and Oostenveld 2007) to correct for multiple comparisons in time
and space. First, at each vertex and at each time point, any data
points that exceeded a pre-set uncorrected significance threshold
of 1% (i.e. P ≤ 0.01) were -log10 transformed, and the rest were
zeroed. The use of unsigned -log-transformed P-values allowed
us to account for effects with the opposite polarities. A single
neuroanatomical source that is located on one side of a sulcus
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can appear on the cortical surface as adjacent dipoles of opposite
polarity (outgoing and ingoing currents) because of signal bleed-
ing to the other side of the sulcus (Hämäläinen et al. 1993; see
Figs. 6 and 7). The use of unsigned P-values therefore ensured
that adjacent effects of opposite signs were treated as a single
underlying source in the statistical analyses.

Second, to minimize multiple comparisons over time, we aver-
aged the transformed P-values at each vertex within three a priori
time-windows of interest: 300–500 ms, corresponding to the N400
time-window, and 600–800 ms and 800–1,000 ms, corresponding
to the first and second halves of the time-window associated with
late positive ERP effects. Then, to minimize multiple comparisons
over space, these transformed P-values were further averaged
across vertices within 140 spatial patches of approximately equal
size (Khan et al. 2018), shown in Supplementary Fig. 1B. This
resulted in 140 separate test statistics in each time-window of
interest, i.e. 140 spatiotemporally-clustered test statistics. This
approach ensured that data points within the same time-window
and spatial patch (i.e. each spatiotemporal cluster) were treated
as originating from a single underlying source. We should note
that, although this approach increases statistical power, it also
constrains our statistical inference to the spatial resolution of
each patch and to the temporal resolution of our a priori time-
windows.

Finally, we computed a null distribution for our
spatiotemporally-clustered test statistics, by carrying out exactly
the same procedure as that described above, but this time
randomly assigning condition labels within each participant,
with 10,000 permutations. For each randomization, we took
the largest value across all spatial patches as our cluster-mass
statistic. To test our hypotheses, we compared each of the
observed spatiotemporally-clustered test statistics against this
null distribution. If an observed cluster-level statistic fell within
the highest 5.0% of the distribution, we considered it to be
significant. Note that this nonparametric cluster-based approach
is robust to any differences in signal-to-noise resulting from
different numbers of trials in the expected, unexpected plausible,
and implausible conditions.

When displaying the results, we show both the uncorrected
and cluster-corrected results on the cortical surface. We projected
the averaged -log10 transformed uncorrected P-values (P < 0.05)
within each time-window at each vertex on to the “fsaverage”
brain (Fischl et al. 1999). We then grouped together all spa-
tial patches that reached cluster-level significance into the neu-
roanatomical regions that are shown in Supplementary Fig. 1A
and listed in Supplementary Table 1 (defined using the Desikan-
Killiany Atlas; Desikan et al. 2006). If one or more patches within
a neuroanatomical region reached cluster-level significance, we
circled the region in red.

We also carried out several additional analyses, which are
reported in Supplementary Materials: (i) an analysis of a subset of
the MEG data to address potential concerns regarding differences
between the expected and implausible conditions in the number of
trials per condition, and in the lexical properties of the critical
words, (ii) an analysis to determine whether there were effects
in an earlier 200–300-ms time-window, and (iii) an analysis of an
analogous search region within the right hemisphere.

Finally, in Supplementary Materials, we report an exploratory
cross-ROI multivariate decoding analysis, which was intended to
provide preliminary multivariate data to clarify or support certain
points in our interpretation of the evoked effects, as discussed in
the main manuscript.

Results
Behavioral
Participants correctly judged the plausibility of 89.42% scenarios
(SD: 8.83%) and answered 80.12% (SD: 11.50%) of the comprehen-
sion questions correctly, suggesting that they were engaged in
comprehension (see Supplementary Materials).

ERP
The ERP results (Fig. 4 and Table 2) replicate previous findings
(Kuperberg et al. 2020). Between 300 and 500 ms, the N400 ampli-
tude increased across the three conditions. Between 600 and
1,000 ms, the unexpected plausible words produced a larger late
frontal positivity than both the expected and implausible contin-
uations, whereas the implausible words produced a larger late
posterior positivity/P600 than both the expected and unexpected
plausible continuations.

MEG
To facilitate a qualitative comparison between MEG sensor-level
results and the scalp-recorded ERP results, we show the sensor-
level MEG results in Fig. 5 (we note, however, that MEG statistical
analyses were carried out in source space). Between 300 and
500 ms, the sensor-level MEG findings showed a similar graded
increase in evoked activity, see Fig. 5A (the evoked response to
the implausible continuations was larger in MEG than in ERP,
see Supplementary Materials for discussion). Between 600 and
1,000 ms, the unexpected plausible and implausible words produced
larger responses than the expected words, and the topographic
sensor maps revealed distinct patterns for each effect, see Fig. 5B.

Source-localized MEG: evoked effects
300–500 ms

As shown in Fig. 6, between 300 and 500 ms, expected, unexpected
plausible, and implausible words produced graded increases in
activity within multiple regions of left lateral, ventral, and medial
temporal cortices. In medial temporal cortices, the effects were
also driven by a dipole going in the opposite direction to the
expected words. In addition, the implausible words produced a larger
response than both the expected and unexpected plausible words
within left inferior frontal cortex, as well as a larger response
than the expected words within anterior cingulate cortex.

600–1,000 ms

As shown in Fig. 7, by 500 ms, the activity produced by the
unexpected plausible words within left temporal cortex had dimin-
ished. Between 600 and 1,000 ms, however, these continuations
produced a response within left inferior frontal cortex, and
re-activated the left middle temporal cortex, with a dipole going in
the opposite direction to that produced in the N400 time-window.

The evoked activity produced by the implausible words was
quite different. By 500 ms, the response produced by these contin-
uations within the left inferior frontal cortex had diminished, but
the activity produced within left temporal and posterior fusiform
cortices continued into the 600–1,000-ms time-window. In the
latter half of this time-window, the implausible words also re-
activated the left inferior frontal cortex, with a dipole going in
the opposite direction to that produced between 300 and 500 ms.
Finally, throughout the 600 and 100-ms window, the implausible
words also produced a large dipole within left medial temporal
cortex, again with the opposite polarity to that produced in the
N400 window.
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Fig. 4. ERP results. A) Grand-averaged ERP waveforms elicited by critical words in each of the three conditions, shown at three representative electrode
sites: Cz, FPz, and Pz. Expected: solid black line; unexpected plausible: solid red line; implausible: dashed blue line. Negative voltage is plotted upwards.
Dotted boxes are used to indicate the time-windows corresponding to the N400 (300–500 ms), the late frontal positivity (600–1,000 ms), and the late
posterior positivity/P600 (600–1,000 ms) ERP components. B) Voltage maps show the topographic distributions of the ERP effects produced by contrasting
expected, unexpected plausible, and implausible critical words between 300 and 500 ms (left panel) and between 600 and 1,000 ms (right panel). Note that
the N400 effects and the late positivity effects are shown at different voltage scales to better illustrate the scalp distribution of each effect.

Table 2. ERP statistical results.

Spatiotemporal region Contrast t-Value df (31) P-value Effect size (d)

N400
(Central region, 300–500 ms)

Unexpected > Expected -5.31 < 0.001 0.94
Implausible > Expected -7.72 < 0.001 1.36
Implausible > Unexpected -4.63 0.001 0.82

Late frontal positivity
(Prefrontal region,
600–1,000 ms)

Unexpected > Expected
Implausible = Expected
Unexpected > Implausible

3.03
1.51
2.52

0.005
0.14
0.018

0.53
0.24
0.42

Late posterior positivity/P600
(Posterior region,
600–1,000 ms)

Unexpected = Expected 1.91 0.07 0.34
Implausible > Expected 7.65 < 0.001 1.12
Implausible > Unexpected 5.75 < 0.001 0.99

Pair-wise statistical comparisons showed that, within left infe-
rior frontal cortex, there was a significant difference in comparing
both the unexpected plausible and the implausible words with the
expected words (600–800 ms), with both effects being driven by
dipoles going in opposite directions in the two conditions. A direct
comparison between the unexpected plausible and implausible condi-
tions, however, revealed no differences within left inferior frontal
cortex. Within left lateral temporal cortex, there were significant
differences in comparing the unexpected plausible words with both
the expected (800–1,000 ms) and implausible words (600–800 ms).
Both these effects were driven by dipoles going in the opposite
direction in each of the two conditions. In posterior fusiform cor-
tex there was a significant difference in comparing the implausible
words with both the expected (600–800 ms) and unexpected plausible

words (600–800 ms and 800–1,000 ms). Similarly, within medial
temporal cortex, the response produced by the implausible words
differed from that produced by both other conditions (600–800 ms
and 800–1,000 ms).

Discussion
We used MEG and EEG to track the spatiotemporal dynamics
of evoked activity produced by expected, unexpected plausible, and
implausible words during language comprehension. At the scalp
surface, our ERP findings replicate previous studies by showing
that, between 300 and 500 ms, the three conditions produced
progressively larger N400 responses (Kuperberg et al. 2020;
Nieuwland et al. 2020), and that, between 600 and 1,000 ms,
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Fig. 5. MEG sensor-level results. A) 300–500 ms. Top: Grand-averaged event-related magnetic fields produced by critical words in each of the 3 conditions,
shown at a left temporal gradiometer sensor (MEG0242 + 0243). The 300–500 ms (N400) time-window is indicated using a dotted box. Bottom: MEG
Gradiometer (Grad) and Magnetometer (Mag) sensor maps show the topographic distributions of the MEG N400 effects produced by contrasting the
expected, unexpected plausible, and implausible critical words between 300 and 500 ms. iIn all contrasts, the distribution of the MEG N400 effect was maximal
over temporal sites, particularly on the left. B) 600–1,000 ms. MEG Gradiometer (Grad) and Magnetometer (Mag) sensor maps show the topographic
distributions of the MEG effects produced by contrasting the expected, unexpected plausible, and implausible critical words in the first half (600–800 ms) and
the second half (800–1,000 ms) of the late time-window of interest. In order to better illustrate the scalp distribution of these late effects, these sensor
maps are shown at a different scale from that used for the 300–500-ms sensor maps. The contrasts between the unexpected plausible and expected critical
words and the contrast between the implausible and expected critical words reveal somewhat distinct spatial distributions of sensor-level activity.

unexpected plausible and implausible continuations produced two
spatially-distinct late positivities (Van Petten and Luka 2012;
DeLong et al. 2014; Brothers et al. 2020; Kuperberg et al. 2020).
By simultaneously collecting MEG data and source-localizing the
evoked response in both time-windows, we were able to show, for
the first time where in the brain these effects are produced.

Several previous MEG (e.g. Helenius et al. 1998; Halgren et al.
2002; Maess et al. 2006; Ihara et al. 2007) and intracranial
(McCarthy et al. 1995) studies have reported effects of sentence
context on the N400 within temporal and/or inferior frontal
cortices. However, most of these previous studies have directly
contrasted expected and implausible words, without dissociating
the effects of lexical predictability and contextual plausibility.
It has therefore been difficult to directly link activity produced
at lower and higher levels of the fronto-temporal hierarchy to
processing at different levels of representation (mapping between
word-forms, semantic features, and real-world knowledge).

In addition, no previous MEG or intracranial study has
source-localized the evoked effects of semantic context beyond
the N400 time-window. By determining precisely when and how
evoked activity across the fronto-temporal hierarchy is modulated
following the onset of incoming words in both time-windows,
our findings shed new light on the cognitive architecture and
neurobiology of online language comprehension.

300–500 ms
The N400 effect of lexical predictability localizes to the left
temporal cortex
In our ERP recordings, the N400 was smaller to the expected than to
the unexpected plausible words, replicating many previous ERP stud-
ies (e.g. Kutas and Hillyard 1984; DeLong et al. 2005; Federmeier
et al. 2007). MEG source-localization showed that this effect of
lexical predictability localized to multiple regions within the left

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac356/6706755 by Tufts U

niversity,  lw
ang48 on 27 Septem

ber 2022



12 | Cerebral Cortex, 2022

Fig. 6. MEG source-level activity produced by the expected, unexpected plau-
sible and implausible critical words in the 300–500 ms (N400) time-window.
A) Signed dynamic statistical parametric maps (dSPMs) produced by
expected (top), unexpected plausible (middle), and implausible (bottom) criti-
cal words are shown at 100-ms intervals from 200 until 500 ms. All dSPMs
are displayed on the FreeSurfer average surface, “fsaverage” (Fischl et al.
1999), thresholded at 0.15, with red indicating outgoing currents (positive
dSPM values) and blue indicating ingoing currents (negative dSPM values).
Ingoing and outgoing currents that are directly adjacent to one another
are interpreted as reflecting a single underlying dipole (neuroanatomical
source). This is because if an underlying dipole/source is situated on one
side of a sulcus, the signal can bleed into the other side, leading to the
appearance of an adjacent dipole in the opposite direction (Hämäläinen
et al. 1993). The full dynamics of these source activations (at all sampling
points) are shown as videos in Supplementary Materials. B) Statistical
maps contrasting unexpected plausible and expected words (top), implausible
and expected words (middle), and implausible and unexpected plausible words
(bottom) within the 300–500 ms (N400) time-window. Averaged -log10
transformed uncorrected P-values (P < 0.05) at each vertex are shown
on the “fsaverage” surface. We grouped together all spatial patches that
reached cluster-level significance into the neuroanatomical regions that
are shown in Supplementary Fig. 1A and listed in Supplementary Table 1
(defined using the Desikan-Killiany Atlas; Desikan et al. 2006). If one or

temporal cortex (lateral, ventral, and medial), suggesting that the
process of mapping form onto meaning (lexico-semantic process-
ing) was easier for expected than for unexpected plausible words. More
specifically, in left ventral temporal regions, processing of expected
(vs. unexpected) words was facilitated within the left posterior
occipitotemporal fusiform cortex (orthographic-level facilitation,
cf. Price and Devlin 2011) and the left mid-fusiform cortex (lexical-
level facilitation, cf. Hirshorn et al. 2016; Woolnough et al. 2021).
In left lateral temporal regions, processing was facilitated within
the left superior temporal cortex (phonological-level facilitation;
Solomyak and Marantz 2009; Vartiainen et al. 2009) and the left
middle temporal cortex (lexical-level facilitation; Lau et al. 2008).
Finally, the smaller dipole to the expected than the unexpected words
in the left medial temporal cortex and in the anterior ventral
temporal pole (bilaterally) may have reflected the reduced need
to retrieve and “bind” distributed semantic features into distinct
concepts (Lambon-Ralph et al. 2017).

In addition to producing a smaller dipole to the expected (vs.
unexpected) words, the medial temporal cortex also produced a
larger dipole, with the opposite polarity, to the expected words.
This is consistent with previous intracranial studies showing that,
within medial temporal regions, both predictable and unpre-
dictable words produce local field potentials in distinct popula-
tion of neurons in the N400 time-window (McCarthy et al. 1995).
We speculate that the dipole to the expected inputs indexed the
recognition of an item-specific match (cf. Duncan et al. 2009)
between the incoming semantic information and a pre-activated
concept. The presence of two dipoles to expected and unexpected
inputs, going in opposite directions, may explain why most previ-
ous MEG studies, which have typically used absolute (rather than
signed) values for source-localization, have failed to observe N400
effects in the medial temporal lobe (see Supplementary Materials
for further discussion).

Critically, in this same N400 time-window, we observed no
effect of lexical predictability in the plausible sentences within
inferior frontal regions. This result suggests that the effect of
lexical predictability on the N400 largely reflects facilitation at the
lower, lexical-semantic level (DeLong et al. 2005; Lau et al. 2016;
Kuperberg et al. 2020).

The N400 effect of contextual plausibility localizes to both
temporal and inferior frontal cortices
In ERPs, we also observed a smaller N400 to unexpected plausible
words, relative to implausible words, again replicating previous
findings (Kuperberg et al. 2020; Nieuwland et al. 2020). We note
that this effect of contextual plausibility on the scalp-recorded
N400 was much larger in MEG than in ERP, which has impor-
tant implications for the functional interpretation of the N400
in the presence of an overlapping late posterior positivity/P600

Fig. 6. more patches within a neuroanatomical region reached cluster-
level significance, we indicate the region using a red circle. Within
left temporal cortex, effects reached cluster-level significance, within
(i) superior temporal gyrus, extending anteriorly towards the temporal
pole and extending posteriorly into the supramarginal gyrus, (ii) the
mid-portion of the superior temporal sulcus/middle temporal cortex (for
contrasts involving the implausible words), (iii) left ventral temporal cortex
(mid- and posterior fusiform gyrus), and (iv) left medial temporal cortex
(parahippocampal and entorhinal). The implausible words additionally
produced cluster-level effects in the left inferior frontal cortex (relative
to both other conditions), and in the anterior cingulate cortex (relative
to the expectedwords). See Supplementary Materials for analyses over the
right hemisphere (Supplementary Figs. 2–4).

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac356/6706755 by Tufts U

niversity,  lw
ang48 on 27 Septem

ber 2022

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac356#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac356#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac356#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac356#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac356#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac356#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac356#supplementary-data


Lin Wang et al. | 13

Fig. 7. MEG source-level activity produced by the expected, unexpected plausible and implausible critical words in the late 600–1,000 ms time-
window. A) Signed dynamic statistical parametric maps (dSPMs) produced by expected, (top) unexpected plausible (middle), and implausible (bottom) critical
words are shown at 100-ms intervals from 500 until 1,000 ms. All dSPMs are displayed on the FreeSurfer average surface, “fsaverage” (Fischl et al.
1999), thresholded at 0.15, with red indicating outgoing currents (positive dSPM values) and blue indicating ingoing currents (negative dSPM values).
Ingoing and outgoing currents that are directly adjacent to one another are interpreted as reflecting a single underlying dipole (neuroanatomical
source). This is because, if an underlying dipole/source is situated on one side of a sulcus, the signal can bleed into the other side, leading to the
appearance of an adjacent dipole in the opposite direction (Hämäläinen et al. 1993). The full dynamics of these source activations (at all sampling
points) are shown as videos in Supplementary Materials. B) Statistical maps contrasting unexpected plausible and expected words (top), implausible
and expected words (middle), and implausible and unexpected plausible words (bottom) are shown between 600 and 800 ms (left) and between 800 and
1,000 ms (right). Averaged -log10 transformed uncorrected P-values (P < 0.05) at each vertex are shown on the “fsaverage” surface. We grouped together
all spatial patches that reached cluster-level significance into the neuroanatomical regions that are shown in Supplementary Fig. 1A and listed in
Supplementary Table 1 (defined using the Desikan-Killiany Atlas; Desikan et al. 2006). If one or more patches within a neuroanatomical region reached
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(see Supplementary Materials for discussion). In MEG, the effect of
contextual plausibility localized to both temporal and prefrontal
cortices.

Within the left temporal cortex, the effect of contextual plausi-
bility broadly localized to the same regions as the effects of lexical
predictability, described previously. Supplementary analyses also
revealed some plausibility effects in homologous regions of the
right temporal lobe (lateral and medial, see Supplementary Mate-
rials). Again, we interpret these smaller evoked responses within
the temporal cortex as reflecting facilitated processing at the
lexico-semantic level. However, in this case, instead of resulting
from the pre-activation of a specific upcoming word, this facil-
itation resulted from the pre-activation of distributed features
associated with a broad semantic category (i.e. animacy-based
features; Wang et al. 2020). Thus, lexico-semantic processing was
easier for the plausible unexpected inputs, where some semantic fea-
tures were pre-activated, than for the implausible inputs where no
semantic features were pre-activated (Paczynski and Kuperberg
2011, 2012; Kuperberg et al. 2020).

In the prefrontal cortex, the effect of contextual plausibility
localized to the inferior portion of the left frontal and orbitofrontal
cortices, as well as to their right hemisphere homologues (see Sup-
plementary Materials). We interpret these smaller inferior frontal
evoked responses to the unexpected plausible (vs. the implausible)
continuations as reflecting the relative ease of mapping plausible
event representations on to longer-term real-world knowledge.

Architectural implications: Towards a predictive coding
framework
In the Introduction, we laid out four general frameworks of
language comprehension. Although each of the first three
frameworks can explain a subset of our findings in the N400
time-window, they cannot explain the full set of results across
both temporal and inferior frontal cortices. For instance, both the
“distributed state” and the “lexico-semantic facilitation” accounts
can explain the graded N400 modulation across the three
conditions within the temporal cortex. However, the “distributed
state” account would have predicted similar graded effects within
the inferior frontal cortex (Fig. 1A), whereas the “lexico-semantic
facilitation” account would have predicted no prefrontal N400
modulation at all (Fig. 1B). The “prediction-integration” account
can explain why the N400 in the inferior frontal cortex was
selectively enhanced to implausible continuations. However, this
framework would have incorrectly predicted nongraded N400
modulation across the three conditions within the temporal
cortex, with an attenuation of the N400 only to the expected
continuations (Fig. 1C).

We argue that the full pattern of evoked activity produced
between 300 and 500 ms across the fronto-temporal hierarchy
can be explained by the computational principles of hierarchical
predictive coding (Fig. 1D). We emphasize that this predictive
coding framework shares several important features with the
other three neurobiological models. Like these other frameworks,
it assumes that language comprehension is both interactive and
incremental (cf. Marslen-Wilson 1987; Altmann and Steedman
1988; Marslen-Wilson et al. 1988; MacDonald et al. 1994;

Tanenhaus and Trueswell 1995), with the prior context influ-
encing the initial feedforward sweep of evoked activity produced
by incoming words between 300 and 500 ms (the N400 response).
Also similar to these other models, it assumes that, in the 300
and 500-ms time-window, information is continually transferred
across temporal and inferior frontal cortices in both predictable
and unpredictable sentences (see Baggio and Hagoort 2011, and
see Lyu et al. 2019; Mamashli et al. 2019; Liu et al. 2020 for
recent empirical evidence). Finally, similar to both the “prediction-
integration” and the “lexico-semantic facilitation” accounts,
predictive coding posits a hierarchical organization of representa-
tions across the fronto-temporal hierarchy. During discourse com-
prehension, we assume that comprehenders incrementally built a
higher-level event model that was maintained over a relatively
long time-scale within the prefrontal cortex, and that interacted
both with real-world knowledge, represented over a still longer
time-scale, as well as with lower-level lexico-semantic representa-
tions, encoded within the temporal cortex at a shorter time-scale.

From a computational perspective, however, there is a key
difference between predictive coding and other frameworks.
Although prior computational models of the N400 have assumed
that evoked activity reflects changes in the state of neural activity
at a given level of the cortical hierarchy (e.g. Brouwer et al. 2017;
Rabovsky et al. 2018), predictive coding posits that the magnitude
of the evoked response reflects the magnitude of prediction error,
i.e. activity produced within a distinct set of “error units”. At
each level of the cortical hierarchy, these error units only encode
information that is not suppressed (or “explained”) by predictions
produced by state units at the cortical level above (Rao and Ballard
1999; Friston 2005). Thus, predictive coding provides an intuitive
biological explanation for the origin of the N400 neural response:
Specifically, new unpredicted inputs trigger increased firing and
postsynaptic potentials within these error units, which, in turn,
results in a larger evoked N400 response.

Within the temporal cortex, predictive coding attributes the
graded increases in N400 amplitude across the three condi-
tions (expected < unexpected plausible < implausible) to graded
increases in the magnitude of prediction error at the lexico-
semantic level. In the case of expected continuations, lexico-
semantic prediction error is fully suppressed by prior top-
down predictions of the semantic features of specific upcoming
words; in the case of unexpected plausible continuations, lexico-
semantic prediction error is partially suppressed by prior top-
down predictions of animacy-linked semantic features (see Wang
et al. 2020), and, in the case of implausible continuations, lexico-
semantic prediction error is not suppressed at all.

Within the inferior frontal cortex, predictive coding attributes
the nongraded modulation of the N400 across the three conditions
(expected = unexpected plausible < implausible) to differences in
magnitude of higher-level prediction error produced at the level
of the event model. According to this framework, there was
no difference in the higher-level prediction error/evoked N400
activity to the expected and unexpected plausible words in inferior
frontal cortex because, in both these conditions, information
encoded in the plausible higher-level event model was explained/-
suppressed by predictions from still longer-term real-world
knowledge. Despite the absence of an inferior frontal N400

cluster-level significance, we indicate the region using a red circle. The unexpected plausible versus expected contrast revealed significant clusters within
left middle temporal and inferior frontal cortices (driven by dipoles going in opposite directions in the two conditions). The implausible versus expected
contrast revealed significant clusters within left posterior (occipitotemporal) fusiform cortex (driven by a dipole to the implausible words), left inferior
frontal cortex (driven by dipoles going in opposite directions in the two conditions), and within the medial temporal cortex (driven by a dipole to the
implausible words). See also Supplementary Materials for analyses over the right hemisphere (Supplementary Figs. 2–4).
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effect for this contrast, unpredicted information was still shared
between the left temporal and inferior frontal cortices in this
time-window, as evidenced by a small but significant cross-ROI
decoding effect (see Supplementary Materials). In contrast, when
the implausible continuations produced updates of the higher-
level event model, these could not be explained/suppressed
by predictions based on real-world knowledge, giving rise to a
higher-level prediction error and an enhanced evoked response
within this region (see Fig. 2, right). This explanation follows
directly from Rao and Ballard’s discussion in their original
description of hierarchical predictive coding in the visual system
(Rao and Ballard 1999): So long as newly encoded unpredicted
input is consistent with the more general statistics of natural
environmental inputs, it should not result in a large increase
in activity within higher-level regions because any higher-level
prediction error is continually suppressed. However, when “the
statistics differ in certain drastic ways from natural statistics”
(Rao and Ballard 1999, p. 84), then this will lead to a larger response
within higher-level regions of the cortical hierarchy.

Finally, predictive coding also posits that an inability to con-
verge on a plausible interpretation in the prefrontal cortex should
result in less accurate top-down predictions, which will fail to fully
“switch off” lower-level lexico-semantic prediction error within
the temporal cortex within the N400 time-window (see Fig. 2,
right). This failure to suppress lexico-semantic prediction error
may have also contributed to the enhanced N400 response pro-
duced by the implausible (relative to the unexpected plausible) words
within the temporal cortex, as well to a prolongation of this effect
into the later time-window.

600–1,000 ms
Replicating previous ERP findings, unexpected plausible and implau-
sible words produced two distinct late positivities between 600
and 1,000 ms: A late frontal positivity to the unexpected plausible
words (Federmeier et al. 2007; Van Petten and Luka 2012; DeLong
et al. 2014; Brothers et al. 2020; Kuperberg et al. 2020), and a late
posterior positivity/P600 to the highly implausible continuations
(Kuperberg 2007; van de Meerendonk et al. 2009; Van Petten and
Luka 2012; DeLong et al. 2014; Brothers et al. 2020; Kuperberg et al.
2020; Brothers et al. 2021). Once again, our source-localized MEG
results constrain our understanding of the functional significance
of this late-stage evoked activity.

Late evoked effects to unexpected plausible words within
left inferior frontal and middle temporal cortices
It has been proposed that the late frontal positivity evoked by
unexpected plausible words reflects a successful high-level shift
in the event model, together with feedback to the lower lexico-
semantic level (Brothers et al. 2015, 2020; Kuperberg et al. 2020).
Our MEG findings are consistent with this account. Between 600
and 1,000 ms, unexpected plausible, relative to expected, continua-
tions produced late evoked effects within both left inferior frontal
and left middle temporal cortices.

Hierarchical predictive coding offers a computational-level
explanation for this late-stage activity. Within this framework,
these late evoked responses are attributed to top-down error—
that is, activity produced by new top-down predictions at a given
level of the hierarchy that cannot be explained by its prior
state (Rao and Ballard 1997, 1999). More specifically, according
to this framework, if an unpredicted incoming word leads the
brain to retrieve new schema-relevant information from long-
term memory (cf. Franklin et al. 2020, e.g. infer what trainees
might be doing in a beach scenario), then this will result in the
generation of new schema-relevant predictions (Kuperberg 2021)

that are propagated down the cortical hierarchy. When these
new top-down predictions activate the left inferior frontal cortex,
they will produce top-down error at the level of the event model,
explaining the larger late evoked response to the unexpected
plausible continuations within this region, and when they reach
the left temporal cortex they will produce top-down error at the
lexico-semantic level, explaining the larger late evoked response
within the left middle temporal cortex (see Fig. 3, left). In the
visual system, it has been proposed that, following an initial
bottom-up sweep of activity, this type of feedback re-activation
ensures that lower-level regions encode information that is
consistent with global gestalt representations that are encoded in
higher cortical areas (Lee and Mumford 2003).

Consistent with this interpretation, the late evoked effect
within the left middle temporal cortex was driven by a dipole
with the opposite polarity to the dipole produced within the
left temporal cortex in the earlier N400 time-window. Although
the precise significance of this dipole reversal is unclear (see
Supplementary Materials for further discussion), it provides
evidence that this later evoked effect (top-down lexico-semantic
error) was functionally distinct from the earlier stimulus-driven
evoked N400 effects observed between 300 and 500 ms (bottom-
up lexico-semantic prediction error). This dipole reversal also
provides evidence that this late evoked activity does not simply
reflect a response to the subsequent word. Finally, an exploratory
multivariate analysis revealed a small but significant above-
chance cross-ROI decoding effect between left frontal and left
temporal regions, suggesting that the unexpected information
was indeed shared between these two brain regions within this
late time-window (see Supplementary Materials).

Late evoked effects to highly implausible words within
posterior fusiform, inferior frontal, and medial temporal
cortices
In the present study, the implausible words were not simply
implausible—they were also anomalous (e.g. “cautioned the
∗drawers”); that is, they conflicted with the state of the hierarchical
generative model as a whole. This conflict may explain why,
relative to expected words, the anomalies activated the anterior
cingulate cortex in the earlier N400 time-window (Botvinick 2007;
see also Ide et al. 2013).

It has been proposed that the late posterior positivity/P600
produced by highly implausible continuations between 600 and
1,000 ms is linked to a conflict-driven reprocessing at lower
levels of linguistic representation (van de Meerendonk et al. 2009;
Brothers et al. 2020; Kuperberg et al. 2020; Brothers et al. 2021).
Consistent with this theory, the implausible words produced a
robust late evoked effect within the posterior (occipitotemporal)
fusiform cortex—the so-called “visual word-form area”—that sup-
ports orthographic processing (Price and Devlin 2011; Heilbron
et al. 2020b; see Supplementary Materials for additional discus-
sion on the relationship between the ERP and MEG evoked effects
in this late time-window).

Predictive coding again provides a mechanistic account of this
lower-level orthographic reprocessing (see Fig. 3, right). Within
this framework, the late evoked activity within the posterior
fusiform cortex is attributed to the production of prediction
error at a still lower orthographic level of representation
(Price and Devlin 2011) because higher cortical levels failed
to generate accurate top-down predictions that would have
otherwise suppressed this low-level error within this late time-
window. Specifically, after inferring an anomalous event (e.g.
<lifeguards cautioned drawers>) between 300 and 500 ms, it
was not possible to shift the event model by retrieving new
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stored schemas from long-term memory. Therefore, between
600 and 1,000 ms, incorrect predictions based on the prior
context and real-world knowledge would have continued to be
propagated down the cortical hierarchy. Within the left middle
temporal cortex, these top-down lexico-semantic predictions
(e.g. “swimmers”<animate>) would have been incompatible
with the lexico-semantic information that was inferred from
the bottom-up input (e.g. “drawers”< inanimate>), resulting
in a destabilization of the lexico-semantic state. As a result
of this destabilization, the left middle temporal cortex would
have produced noisy, inaccurate orthographic predictions.
Upon reaching the posterior fusiform cortex, these predictions
would have failed to suppress orthographic prediction error,
leading to the enhanced evoked response within this region
(orthographic reprocessing).

Predictive coding can also explain why, in this late time-
window, the anomalous continuations re-activated the left
inferior frontal cortex, with a dipole of the opposite polarity
to that produced by these continuations in the N400 time-
window. Within this framework, this late inferior frontal evoked
response reflected top-down error produced the level of the
event model when the inaccurate predictions, based on real-
world knowledge (<lifeguards cautioned swimmers>), failed to
explain the implausible event (<lifeguards cautioned drawers>)
that had been inferred within the N400 time-window. Indeed,
an exploratory cross-ROI decoding analysis revealed no evidence
of shared information between left inferior frontal and lateral
temporal/fusiform regions within this later time-window (see
Supplementary Materials).

Finally, the implausible continuations also produced a dipole
within the medial temporal cortex throughout the 600–1,000 ms
time-window, again with the opposite polarity to that produced in
the N400 time-window. We speculate that this medial temporal
activity supported new learning/adaptation, which was triggered
by the failure of the current generative model to explain the
input—that is, to minimize error across the cortical hierarchy (see
further below).

Open questions
We have argued that the full time-course of evoked activity pro-
duced within temporal and inferior frontal cortices in response
to expected, unexpected plausible, and implausible words, can be
understood within a hierarchical predictive coding framework of
language comprehension. This interpretation leaves many open
questions that will be important to address in future studies.

First, it will be important for future studies to parametrically
manipulate lexical predictability and plausibility in order to deter-
mine precisely how these factors modulate evoked activity within
left temporal and inferior frontal cortices at both early and later
stages of processing. It will also be important to understand
whether and how evoked activity in both time-windows is modu-
lated by the lexical and discourse constraint of the prior context.
For example, according to predictive coding, between 300 and
500 ms, evoked activity produced by unexpected plausible words
within left temporal cortex should not be modulated by prior con-
textual constraint, consistent with scalp-recorded N400 findings
(Kutas and Hillyard 1984; Federmeier et al. 2007; Kuperberg et al.
2020).

Second, consistent with a predictive coding architecture, we
have assumed that, at each level of the cortical hierarchy, the
amplitude of the evoked response largely reflects the magnitude
of prediction error—activity within populations of error units that
cannot be explained/suppressed by the level above (Friston 2005).

A key claim of predictive coding is that these error units are
computationally distinct from state units, which encode repre-
sentational information, regardless of its predictability. As such,
this framework predicts that, even if new information does not
produce an increased evoked response, we should still be able
to decode this information using multivariate methods, which
are sensitive to representational information, regardless of its
magnitude. It will therefore be important for future studies to test
this hypothesis directly by using a combination of univariate and
multivariate methods. For example, future studies should follow
up our preliminary finding, reported in Supplementary Materials,
that, within the left inferior frontal cortex, despite failing to
produce a larger N400 response (higher-level prediction error)
between 300 and 500 ms, it was still possible to decode new unex-
pected plausible information within this region in this same time-
window. Similarly, future studies should test the hypothesis that,
within the left temporal cortex, despite producing a very small
evoked N400 response, it should be possible to decode expected
information within the N400 time-window (see Kok et al. 2012;
Bell et al. 2016 for evidence of dissociations between univariate
and multivariate activity to expected inputs in low-level visual
perception).

A third and related set of questions concerns the nature of
information f low across the cortical hierarchy. Like most other
neurobiological frameworks of language comprehension, predic-
tive coding assumes that, in plausible sentences, both unexpected
and expected information are shared across multiple regions of
the cortical hierarchy between 300 and 500 ms (e.g. Baggio and
Hagoort 2011; Lyu et al. 2019; Mamashli et al. 2019; Liu et al.
2020). What remains unclear is precisely how this information is
transmitted between regions. For example, some researchers have
hypothesized that different frequency bands of oscillatory neural
activity carry top-down predictions (e.g. slow beta/alpha) and
bottom-up prediction error (e.g. fast gamma; Arnal and Giraud
2012; Bastos et al. 2015; Lewis and Bastiaansen 2015; Bastos et al.
2020). It will be important for future studies to test this hypothesis
more explicitly.

Finally, an important set of open questions concerns the rela-
tionship between evoked neural activity and longer-term learn-
ing, particularly given the robust effects observed in the medial
temporal cortex in both the 300–500 and 600–1,000-ms time-
windows. In the present study, we focused on the role of evoked
activity (prediction error) in relation to inference, i.e. the process
of online language comprehension. However, prediction error is also
thought to play a critical role in learning in both linguistic (Elman
1990; Dell and Chang 2014) and nonlinguistic (Rescorla 1988)
domains. Recent computational models, using standard connec-
tionist architectures, have shown that N400 prediction errors can,
in principle, drive incremental learning (see Rabovsky and McRae
2014; Rabovsky et al. 2018; Fitz and Chang 2019; see also footnote
2 in Introduction). Predictive coding offers a biologically plausible
algorithm for instantiating this type of longer-term learning (Rao
and Ballard 1999; Whittington and Bogacz 2019; see Nour Eddine
et al. in press for discussion).

In addition to this relatively slow cortical adaptation, which
may be linked to the N400, it is also possible that linguistic anoma-
lies may trigger a more rapid form of learning that is often dis-
cussed in the P600 literature (e.g. Coulson et al. 1998; Hanulikova
et al. 2012). Notably, in the present study, semantic anomalies
produced a distinct reverse-dipole effect in the 600–1,000 ms
time-window within medial temporal cortices (see McClelland
et al. 1995; O’Reilly and Rudy 2001 for more general discussion
of distinct modes of medial temporal function in relation to
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slower vs. faster learning). In future studies, it will be important
to determine whether and how evoked activity in the medial
temporal lobe, in both early and late time-windows, influences
different types of longer-term learning.

Conclusions
Of course, no single study can provide definitive evidence for
any single model of language comprehension. As we have noted,
several of our individual findings, including the graded increase
in N400 activity within the temporal cortex, and reprocessing of
anomalies within posterior fusiform cortex, are also consistent
with other psycholinguistic or neurobiological models. Here, we
have interpreted the full pattern of findings within a single com-
putational framework—predictive coding—which has been pro-
posed as a unifying theory of brain function, in multiple domains
of perception and cognition (Clark 2013), including lower-level
aspects of language processing (Price and Devlin 2011; Blank and
Davis 2016; Sohoglu and Davis 2020). Our findings suggest that the
computational principles of predictive coding may also explain
the time-course of evoked activity produced across the fronto-
temporal network that supports higher-level language compre-
hension.
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