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This	paper	is	a	commentary	on	an	ongoing	debate	on	prediction	during	language	processing.	
Specifically,	we	focus	on	the	data	reported	in	DeLong	et	al.	(2005)	and	a	recent	study	across	
nine	 labs	 reporting	 to	 fail	 to	 replicate	 the	 original	 finding	 (Nieuwland	 et	 al.,	 2017).	 A	
description	 of	 the	 latter	 study	 was	 made	 available	 on	 arxiv.org	 on	 02/25/2017	
(http://biorxiv.org/content/early/2017/02/25/111807).	This	is	the	version	we	are	addressing	
here.	
	
Our	commentary	was	shared	with	the	authors	from	both	teams	for	comment	on	05/11/2017	
(some	of	our	comments	were	communicated	to	both	teams	in	March	and	April,	2017).	A	few	
of	 the	 methodological	 aspects	 we	 raise	 in	 our	 discussion	 have	 since	 apparently	 been	
addressed	 in	 unpublished	 revisions	 of	 Nieuwland	 et	 al.	 (2017;	 Mante	 Nieuwland,	 p.c.	
05/11/2017).	The	present	document	will	thus	likely	undergo	changes,	too.	
	
We	 would	 like	 to	 thank	 both	 DeLong	 and	 colleagues	 and	 Nieuwland	 and	 colleagues	 for	
sharing	 additional	 information	 about	 their	 studies	 with	 us,	 and	 for	 answering	 our	 many	
questions.	We	would	also	like	to	express	that	the	points	we	raise	in	this	manuscripts	have	not	
undergone	 peer	 review	 and	 should	 thus	 not	 be	 used	 to	 interfere	 with	 the	 publication	 of	
Nieuwland	et	al.	(2017),	which	is	still	under	review.	
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Abstract 

The extent to which language processing involves prediction of upcoming 
inputs remains a question of ongoing debate. One important data point comes 
from DeLong et al. (2005) who reported that an N400-like event-related 
potential correlated with a probabilistic index of upcoming input. This result is 
often cited as evidence for gradient probabilistic prediction of form and/or 
semantics, prior to the bottom-up input becoming available. However, a recent 
multi-lab study reports a failure to find these effects (Nieuwland et al., 2017). 
We review the evidence from both studies, including differences in the design 
and analysis approach between them. Building on over a decade of research on 
prediction since DeLong et al. (2005)’s original study, we also begin to spell 
out the computational nature of predictive processes that one might expect to 
correlate with ERPs that are evoked by a functional element whose form is 
dependent on an upcoming predicted word. For paradigms with this type of 
design, we propose an index of anticipatory processing, Bayesian surprise, and 
apply it to the updating of semantic predictions. We motivate this index both 
theoretically and empirically. We show that, for studies of the type discussed 
here, Bayesian surprise can be closely approximated by another, more easily 
estimated information theoretic index, the surprisal (or Shannon information) 
of the input. We re-analyze the data from Nieuwland and colleagues using 
surprisal rather than raw probabilities as an index of prediction. We find that 
surprisal is gradiently correlated with the amplitude of the N400, even in the 
data shared by Nieuwland and colleagues. Taken together, our review suggests 
that the evidence from both studies is compatible with anticipatory semantic 
processing. We do, however, emphasize the need for future studies to further 
clarify the nature and degree of form prediction, as well as its neural signatures, 
during language comprehension. 
 

Keywords: prediction; surprisal; Bayesian surprise; event-related potentials; 
hierarchical predictive processes; N400; N250  
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The role of prediction in language processing remains a topic of central interest to the field 

(Federmeier, 2007; Huettig & Mani, 2015; Kuperberg & Jaeger, 2016; Marta Kutas, DeLong, & 

Smith, 2011). Here we comment on a recent debate between Nieuwland and colleagues (Ito, 

Martin, & Nieuwland, 2016, 2017; Nieuwland et al., 2017) and DeLong and colleagues (DeLong, 

Urbach, & Kutas, 2005, 2017a,b).  

 

An important study published in 2005 by DeLong et al. (2005) has been taken to provide an 

answer to three important questions about prediction. First, the study has been cited as evidence 

that predictions are generated prior to bottom-up evidence becoming available. Second, that 

predictions can be generated at both the level of semantic features and phonological form. And 

third, that these predictions are probabilistic in nature. There have been studies published prior to 

and after DeLong et al. reporting both behavioral (Allopenna, Magnuson, & Tanenhaus, 1998; 

Altmann & Kamide, 2007; Dahan & Tanenhaus, 2004) and neural signatures of predictive 

processing (Dikker & Pylkkänen, 2013; Otten, Nieuwland, & Van Berkum, 2007; Piai et al., 

2016; Van Berkum, Brown, Zwitserlood, Kooijman, & Hagoort, 2005; Wicha, Moreno, & Kutas, 

2004). However, DeLong et al. (2005) was one of the first studies that spoke to all three of these 

questions. This makes the results of a 9-lab study by Nieuwland et al. (2017), who recently 

report that they failed to replicate DeLong et al.’s (2005) findings, highly relevant to discussions 

of prediction in language processing. We use this debate as a welcome opportunity to review the 

two studies, and to speak to more general questions about the role of prediction in language 

comprehension.   
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We first describe the original DeLong et al. (2005) study. Then we describe the recent replication 

attempt by Nieuwland et al. (2017). We discuss important differences in the design and analysis 

of the two studies, and why they affect the conclusions that can be drawn from the failure to 

replicate. Following this summary, we discuss an alternative index of predictability to that used 

by both DeLong et al. (2005) and Nieuwland et al. (2017), motivated by recent research in 

psycho- and neurolinguistics. We find that this alternative index, surprisal, does, in fact, yield a 

significant effect for the data shared by Nieuwland et al. (2017).  

 

We then consider the design of DeLong et al. (2005) in relation to three questions that we 

consider essential to any discussion of predictive processing (see Kuperberg & Jaeger, 2016). 

The first concerns the timing of prediction in relation to the appearance of the bottom-up input. 

Specifically, is activity at a given level of representation pre-activated ahead of new bottom-up 

information arriving or being decoded at that level of representation? The second concerns the 

level(s) of representation at which predictions are generated and updated (e.g. event structure, 

semantic features, form features etc.). The third concerns the candidate set of predicted entities. 

Specifically, is prediction gradient, that is, probabilistically conditioned on contextual 

expectations? Or is prediction an all-or-nothing phenomenon, entailing the prediction of just one 

or at most a very small set of candidates? Guided by these questions, we spell out different 

hypotheses about the predictive chain that could lead to effects such as those reported in DeLong 

et al. (2005) and similar studies (Van Berkum et al., 2005; Wicha et al., 2004). We formalize a 

probabilistic index of the hypothesized predictive processes in terms of Bayesian surprise, and 

compare it—both theoretically and empirically—to the index of predictability used in most ERP 

studies addressing this question thus far (cloze probabilities). Taken together, all these 
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considerations lead us to conclude that is too early to dismiss the evidence for prediction 

observed in DeLong et al.’s original study.  

 

Background and summary of studies 

DeLong et al. (2005) 

DeLong et al. (2005) measured event-related potentials (ERPs) in sentences like (1), in which the 

sentence context creates a range of constraints for a specific article+noun combination (‘a kite’). 

The words of interest then either confirm this expectation with the expected article+noun 

combination (‘a kite’), or disconfirm this expectation with a plausible yet unexpected 

continuation (e.g. ‘an airplane’). The authors focused on modulation of the N400—a negative 

going ERP component that peaks at around 400ms after stimulus onset, and that reflects the ease 

of semantically processing incoming information (for recent reviews, see Kuperberg, 2016; 

Kutas & Federmeier, 2011).  

 

(1)  The day was breezy so the boy went outside to fly a kite/an airplane .... 

 

DeLong and colleagues carried out two main analyses in which they analyzed the relationship 

between the amplitude of the N400 and an estimate of the contextual predictability of both the 

article and the noun. In both analyses, contextual predictability was estimated using the cloze 

procedure (Taylor, 1953; more on the pros and cons of this approach below), and the N400 

amplitude was operationalized as average activity between 200-500ms after the onset of words 

of interest. DeLong and colleagues sorted ERP trials by their cloze probability into 10 equally-

sized bins (from 0-10% to 90-100% cloze). They then calculated the average ERP amplitude 
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between 200-500ms within each bin in each participant at all 26 electrode sites, before averaging 

across participants.  

 

They first analyzed the relationship between ERP amplitude evoked by the noun (e.g. “kite” in 

(1)) and the cloze probability of the noun. They found that, at centro-parietal electrode sites, the 

average amplitude of the waveform evoked by the noun in each bin inversely correlated with the 

average cloze probability of the noun in each bin. The centro-parietal scalp distribution of this 

effect was consistent with that of the N400. In other words, consistent with prior work (Kutas & 

Hillyard, 1984), the lower the cloze probability of the noun, the larger (more negative) the 

amplitude of the N400. This was interpreted as evidence for gradient probabilistic semantic 

processing at the point of the noun. 

 

In addition, DeLong et al. examined the relationship between the amplitude of ERPs evoked by 

the preceding article, again averaged between 200-500ms, and the cloze probability of the article. 

As described below, their design allowed them to test whether comprehenders had pre-activated 

both the semantic and phonological features of the noun at the point the article was encountered. 

These were reasonable choices at the time of the paper’s original publication. However, as we 

discuss later, it is an open question whether the cloze probability of the article is the most 

appropriate measure for addressing these questions, or whether the full 200-500ms time window 

is the most sensitive time window to test hypotheses about the specific level of representation at 

which prediction takes place.  
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In DeLong et al.’s experiment, the expected target noun (e.g., ‘kite’ in (1)) was preceded by an 

indefinite article. Indeed, the target nouns in the experimental stimuli were always preceded by 

an indefinite article—either ‘a’ or ‘an’, depending on the phonology of the target noun (e.g., ‘a’ 

for ‘kite’ in (1)). Crucially, the unexpected noun always required the opposite indefinite article 

(e.g., ‘an’ for ‘airplane’ in (1)). How often the highly expected target noun required ‘a’ versus 

‘an’ was counterbalanced across items and across participants. This design made it possible to 

address the question of whether comprehenders had generated not only semantic, but also form 

(phonological) predictions about the noun at the point at which the article was encountered.1 

Specifically, the assumption was that any ERP modulation at an article that mismatches the 

phonological form of a predicted noun (e.g. ERP modulation on ‘an’ following a context like (1), 

which predicts the semantic features of <kite>), should only be seen if participants had actually 

predicted the form of ‘kite’ at this point. DeLong and colleagues carried out a similar analysis to 

the one that they carried out at the noun. Once again, they found evidence for a correlation, again 

at centro-parietal electrode sites, although they note that the topographic distribution of the effect 

was more right lateralized than at the noun (see Figure 1c, DeLong et al., 2005). The correlation 

observed on the article was numerically weaker than on the noun (though apparently statistically 

similar “at some electrode sites”, DeLong et al., 2005, p. 1119). DeLong et al. refer to this 

modulation as an N400 effect. They argued that these findings provide evidence that 

“anticipatory processing can happen not only for conceptual or semantic features but also for 

                                                
1 We note that, while the rule that determines the form of the indefinite article is phonological (‘an’ before vowel onsets, ‘a’ in all 

other contexts), there is a close correspondence to orthography (but see, e.g., ‘a uniform’, which phonologically starts with a 

consonant, but orthographically with a vowel character). Since words violating this correspondence were not included in the 

experiment matrials used by DeLong et al. (2005), the relevant form prediction could be orthographic or phonological or both. 
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specific phonological word forms”, that “the system makes graded predictions” and that “articles, 

too, are predicted and integrated with context”.   

Nieuwland et al. (2017) 

Nieuwland et al. (2017) present a large-scale replication attempt of DeLong et al. (2005), 

including 9 separate replications in 9 different labs across the United Kingdom. Their results on 

the article, they argue, call into question DeLong et al.’s conclusions that comprehenders 

probabilistically predict the form of the noun ahead of the article’s semantic features becoming 

available. 

 

Whereas an earlier replication attempt by some of the same authors (Ito et al., 2016) followed 

DeLong et al.’s design relatively loosely, Nieuwland et al. (2017) aim for a close replication of 

both procedure and stimuli. We note, however, that a variety of different ERP recording systems 

were used, and that the nine replication experiments differed in other aspects both from each 

other and the original study, ranging from the numbers of participants in each individual study to 

methods of preprocessing and artifact rejection (see DeLong et al., 2017a for discussion of some 

of these issues). The stimuli are the same as in DeLong et al. (2005), with two exceptions. The 

first deviation is intended: Nieuwland and colleagues made minor modifications to the sentences 

to accommodate the differences in spelling, vocabulary, and cultural background between 

American English and British English. The second deviation from DeLong et al. is likely 

unintended and perhaps critical: while DeLong et al. (2005) included 116 fillers interspersed 

between 80 experimental stimuli (see DeLong et al., 2016), the 9-lab replication attempts by 

Nieuwland and colleagues only presented the 80 experimental stimuli. We return to this issue 

and its potential relevance below.  
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Nieuwland and colleagues reported two sets of analyses. The cloze probabilities (at both the 

noun and the article) that were used in all analyses were obtained from a new norming 

experiment with British participants, so as to accommodate potential differences in cloze 

probabilities between the (intended) populations. In addition, Nieuwland and colleagues 

employed exactly the same binning of cloze probabilities as DeLong and colleagues, and they 

also used the same time-windows over which the ERP signal was averaged (200-500ms). 

 

In the first set of analyses—intended as a close replication of the correlation analyses performed 

by DeLong et al. (2005)—Nieuwland et al. (2017) examined the data separately for each of the 

nine labs. In each of these analyses, they used the same filters (.2 - 15Hz) for the EEG signal as 

used by DeLong et al., but they did not employ baseline correction. No such correction was 

mentioned in DeLong et al., 2005, 2017b, although, in fact, DeLong and colleagues used the 

same  –500~0ms pre-article baseline for both the article and noun analyses (K. DeLong, p.c.).  

 

In six of the labs, Nieuwland et al. (2017) report a significant correlation between the noun’s 

cloze probabilities and the N400 amplitude on the noun, with a similar classic N400 centro-

parietal topographic distribution as that reported by DeLong et al. (2005); in two of the labs, the 

correlation trended, and in one lab it was insignificant (for further discussion of this, see DeLong 

et al., 2017a).  

 

In contrast to the results on the noun, the correlation between the cloze probabilities on the 

article and N400 amplitude on the article failed to reach significance in any of the labs. In fact, 
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most labs exhibited a numerical trend towards the opposite direction, i.e. a larger negativity in 

association with higher article cloze probabilities, which was significant in two of the labs. One 

lab did reveal a correlation between the negativity evoked between 200-500ms and cloze 

probability in the expected direction, but this was significant at left frontal electrodes rather than 

at central parietal sites as found by DeLong et al. (2005) (see Figure 1, Nieuwland et al., 2017). 

 

In the second set of analyses, Nieuwland et al. (2017) go beyond the original analyses presented 

by DeLong et al., (2005) by analyzing the trial-level data. These analyses were conducted with 

linear mixed-effect regression, with cloze probability as a fixed-effect predictor and random by-

participant and by-item intercepts as well as slopes for cloze probability. They did not include a 

random effect for lab because they argued that “there were only 9 laboratories, and laboratory 

was not a predictor of theoretical interest.” Instead, they treated lab as a fixed-effect predictor 

and also included the interaction between lab and cloze probabilities. They found that including 

lab as a predictor did not significant increase model fit, and so they only reported the model 

results without lab as a predictor. Additionally, for this single trial analysis, a few changes were 

made. Unlike for the individual lab analyses, Nieuwland and colleagues used unfiltered data and 

a baseline correction of -100~0ms. In addition, instead of running separate models for each 

electrode, they averaged the N400 amplitude across six central-parietal electrodes (Cz, C3, C4, 

Pz, P3, P4) and used this average as the dependent variable.  

 

At the noun, this approach once again replicates the significant effect found by DeLong et al. 

(2005). At the article, however, Nieuwland et al. once again find that the cloze probability of the 

article does not statistically predict ERP modulation at the article, though we note that the effect 
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is numerically in the predicted direction (p < .13).2 Nieuwland and colleagues argue that the 

numerical trend "at least partly reflected the effects of slow signal drift that existed before the 

articles were presented” and that it did not reflect ERP modulation induced by the articles 

themselves. They also present additional Bayesian analyses, arguing that these further support 

the absence of an N400 effect on the article. We describe these analyses in more detail below as 

part of our critique below.  

 

Finally, to rule out the possibility that participants were just insensitive to the article 

manipulation, after each session, Nieuwland et al. (2017) ran a control experiment on the same 

participants (in each of the nine labs), in which the same critical nouns were preceded by either a 

correct or incorrect article (e.g. an/*a apple). Incorrect noun-article combination did elicit a 

larger P600, indicating that participants knew and were sensitive to the phonological constraint 

on the pre-nominal indefinite article. It is worth noting, however, that the nouns were embedded 

in sentences that were different from those used in the main experiment. 

 

Based on these findings, Nieuwland et al. (2017) question the findings by DeLong and 

colleagues, and conclude that the claim “that prediction is probabilistic, rather than all-or-none, 

is now questionable”. They consider their findings a “challenge to the theory that comprehenders 

predict upcoming words, including their initial phonemes, through implicit production”. 

                                                
2 Nieuwland et al. (2017) also conduct additional single trial analyses of the N400 amplitude on the article using different pre-

stimulus baseline corrections (-200~0ms and -500~0ms). With the -200~0ms baseline correction, the N400 analysis on the article 

still trends in the expected direction (p<.19); with the, -500~0ms baseline correction, p > .50. They also used a high-pass filer 

of .1Hz combined with a -100~0ms baseline correction, and the effect on article is non-significant (p > .56). 
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What can be inferred from this replication attempt? 

Nieuwland and all the labs who took part in their study are to be applauded for dedicating the 

significant time and resources necessary for nine(!) replication attempts of an effect that is much 

cited and of high relevance to theory building in neurolinguistics. They further generously shared 

their preprocessed data, averaged across the 200-500ms time window, publically prior to 

publication, facilitating follow-up analyses by other researchers. Before we proceed, we also 

would also like to acknowledge the prompt and open responses to all of our follow-up questions 

by both Nieuwland and colleagues and DeLong and colleagues.  

 

We begin by reviewing differences between the replication attempt and the original study. 

Second, we review the additional Bayesian analyses provided by Nieuwland et al. (2017) and 

conclude that they are less informative than might initially appear. Third, we turn our critique to 

three critical issues that are not unique to Nieuwland et al. (2017), but apply equally to other 

studies on prediction, including the original study by DeLong et al. (2005). All three of these 

final issues relate to the operationalization of predictability in terms of cloze probabilities. We 

also present one post-hoc analysis of the 9-lab-data shared by Nieuwland et al. (2017)—the only 

one we performed—that suggests that an alternative and theoretically-motivated index of 

probabilistic prediction, surprisal, actually reveals a significant effect in Nieuwland et al.’s 

datasets (even after correcting for multiple comparisons). After presenting our critique, we revisit 

the conclusions offered by Nieuwland and colleagues in the light of the three points outlined 

above that we consider to be critical in studying and interpreting probabilistic predictive effects 

in language comprehension. 

available for use under a CC0 license. 
peer-reviewed) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made 

The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/143750doi: bioRxiv preprint first posted online May. 30, 2017; 

http://dx.doi.org/10.1101/143750


 
 

-14- 

Differences from the original study 

Due to omission of important methodological details in DeLong et al. (2005; as acknowledged 

by DeLong et al., 2017b), the 9-lab replication attempt by Nieuwland and colleagues differs from 

the original study in ways that are arguably important.  

 

No baseline correction used in the correlation analyses of the individual labs’ data. As noted 

above, in the correlation analyses carried out in the individual labs (on both the noun and the 

article), Nieuwland et al. (2017) did not use a baseline correction. This is in contrast to the 

analyses carried out by DeLong et al. (2005), who did use a baseline correction of -500-0ms 

(DeLong, p.c.), although, unfortunately, DeLong and colleagues did not report the use of this 

baseline in their original paper. We note this here because there is some evidence that this 

difference in analysis matters. As noted above, in the trial-level analysis for which Nieuwland et 

al. did use a baseline correction (-100-0ms on unfiltered data), there was a numerical trend of the 

data in the predicted direction—the same direction in which DeLong et al. (2005) report a 

significant effect.  

 

To explore this further, we conducted an additional mixed-effects regression on the same trial-

level data (-100-0ms baseline, unfiltered data). Besides cloze probability, we also included lab, 

as well as its interaction with cloze probability, as fixed-effect predictors (using the code that 

Nieuwland and colleagues shared online). We found that seven out of nine labs exhibit a trend in 

the same direction as in DeLong et al. (2005). In this re-analysis of Nieuwland and colleagues’ 

data, the main effect of cloze probability on the article was marginally significant (p < .13), in 

the same direction for which DeLong et al. (2005) found a significant effect (p < .05).  
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Lack of fillers. All nine experiments presented in Nieuwland et al. (2017) lacked filler trials: 

participants saw 80 sentences with constraining contexts that were predictive of a specific noun 

(to various degrees, see Figure 1 below), and in half of the trials, this expectation was not met. 

This differs from the original experiment carried out by DeLong et al. (2005), which included 

116 filler items.   

 

It is possible that this difference between the two studies influenced modulation of the N400 on 

both the noun and the article. This is because repeated prediction mismatches might lead 

comprehenders to adapt what they predict, or even whether they predict at all. A number of 

behavioral studies have found that readers can adapt their expectations when they are repeatedly 

mismatched (e.g., Fine & Jaeger, 2016; Fine, Jaeger, Farmer, & Qian, 2013; Fraundorf & Jaeger, 

2016; Kaschak, 2007; Kaschak & Glenberg, 2004)—adaptation that is captured by a Bayesian 

model of expectation adaptation (Fine et al., 2010; Kleinschmidt, Fine, & Jaeger, 2012). Some 

studies have found that even strong expectations can be changed drastically—based on the recent 

statistics of the input—within as few as 20 sentences (Farmer, Fine, Yan, Cheimariou, & Jaeger, 

2014; Fine et al., 2013). Similarly fast expectation adaptation has also been observed at the 

lexical level (Brown-Schmidt, 2009; Creel, Aslin, & Tanenhaus, 2008; Yan & Farmer, 2015; see 

also Yildirim, Degen, Tanenhaus, & Jaeger, 2016).  

 

Most relevant to the present study, there is evidence that the modulation of the N400 component 

also changes in response to the overall statistical structure of the experimental environment: it is 

modulated less in environments that discourage versus encourage lexico-semantic prediction. For 
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example, in semantic priming paradigms, the degree of N400 attenuation on individual 

semantically related (versus unrelated) target words is reduced in the presence of a lower (versus 

a higher) proportion of semantically related word-pairs (Lau, Holcomb, & Kuperberg, 2013; Lau, 

Weber, Gramfort, Hämäläinen, & Kuperberg, 2014; see also Brown, Hagoort, & Chwilla, 2000; 

Holcomb, 1988) —a change that is captured by a Bayesian model of expectation adaptation 

(Delaney-Busch, Lau, Morgan, & Kuperberg, 2017).  

 

Findings like these emphasize the need to consider properties of fillers when deriving predictions 

for an experiment: if comprehenders readily adapt the strength of their predictions based on the 

statistics of the recent input, this means that the statistical structure of filler stimuli in an 

experiment can affect how critical stimuli are processed.  We also note that potential sensitivity 

to the statistics of all materials in an experiment does not point to a weakness of prediction as a 

fundamental mechanism underlying language processing  (cf. Ito et al., 2017), but rather to a 

feature of a system that adapts to changes in the statistics of the input, so as to robustly process 

noisy perceptual input (for review, Clark, 2013; Kleinschmidt & Jaeger, 2015). 

 

In the specific comparison between DeLong et al. (2005) and Nieuwland et al. (2017), it is not 

straightforward in what direction the lack of fillers would affect the outcome. On the one hand, 

some properties of the fillers might lead one to expect less N400 modulation on the noun in 

DeLong et al. (2005), compared to Nieuwland et al. (2017). For example, all fillers in DeLong et 

al. (2005) contained relatively constraining initial contexts set up by subject-verb combinations 

(e.g. “Bakers slice….”). Half of the fillers contained highly lexically expected continuations (e.g. 

“bread”) and half contained less expected continuations (e.g. “pizza”, see DeLong et al., 2017b). 
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For each filler item, highly expected and less expected continuations were counterbalanced 

across participants. Thus, the relative percentage of sentences in which a relatively strong lexical 

prediction was confirmed (50%) and disconfirmed (50%) was identical in DeLong et al. (2005) 

and in Nieuwland et al. (2017). However, before any given experimental trial, participants in 

DeLong et al. (2005), on average, would have encountered a higher overall number of sentences 

in which a strong lexical prediction was disconfirmed, which may have led them to reduce the 

degree to which they engaged in predictive processing. On this account, the overall predictability 

effect on the N400 evoked by nouns would be smaller in DeLong et al. (2005) than in Nieuwland 

et al. (2017).  

 

On the other hand, other properties of the fillers might lead one to expect more N400 modulation 

on the noun in DeLong et al. (2005), compared to Nieuwland et al. (2017). In DeLong’s (2005) 

study, the less lexically expected continuations in the fillers were never preceded by an indefinite 

article. And, in fact, the fillers contained an additional 16 sentences that included indefinite 

articles, all of which occurred in non-constraining contexts (this is in addition to 24 instances of 

indefinite articles in non-constraining contexts in the critical items, which appeared in both 

DeLong et al., 2005 and Nieuwland et al., 2017). The proportion of indefinite articles that 

strongly disconfirmed expectations was thus higher in Nieuwland et al. (2017) than in the 

original experiment. On this account, the ERP effect on the article would be smaller in 

Nieuwland et al. (2017), compared to DeLong et al.’s (2005) original study.  

 

available for use under a CC0 license. 
peer-reviewed) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made 

The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/143750doi: bioRxiv preprint first posted online May. 30, 2017; 

http://dx.doi.org/10.1101/143750


 
 

-18- 

The Bayesian analyses 

In addition to the analyses we summarized above, Nieuwland et al. (2017) also present two 

Bayesian analyses. The first analysis builds on Nieuwland and colleagues’ correlation analyses 

carried out on the datasets in the individual labs (mirroring the analysis performed by DeLong et 

al. (2005)). However, as discussed above, this analysis did not use baseline-corrected data 

(differing from DeLong et al., 2005), which might turn out to have made a difference. We 

therefore do not discuss this analysis further. 

 

The second Bayesian analysis carried out by Nieuwland and colleagues was a trial-level analysis 

on the full dataset that combined all 9 labs (a Bayesian linear mixed-effects regression). This 

analysis determined that the credible interval for the effect of cloze probability on the article 

ranged from [-.06, .69]. Since this credible interval contains zero, Nieuwland et al., argued that 

this constitutes further evidence for a failure to replicate. However, we note that the majority of 

credible interval is larger than zero, i.e. suggesting an effect of cloze probability on the article in 

the same direction as that found by DeLong et al. (2005). While this by itself is not strong 

evidence in favor of the effect reported in DeLong et al. (2005), it is arguably even less expected 

under the assumption that there is no relation between cloze probability and N400 amplitude on 

the article (for the same point, see Vasishth, 2017). 

 

Using cloze probabilities to capture predictability effects  

The next two issues that deserve attention relate to the use of cloze probabilities to investigate 

neural signatures of prediction, including (by hypothesis) the N400. The points we raise here are 
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of relevance not only to the present debate, but to work on neural (and behavioral) signatures of 

prediction more generally. 

 

Lack of precision in estimating the cloze probability. Both DeLong et al. (2005) and Nieuwland 

et al. (2017) operationalize lexical predictability in terms of cloze probabilities. This is, indeed, 

the most common approach in ERP studies, going back to the original landmark study by Kutas 

and Hillyard (1984). There are, however, important issues with this approach (for reviews, see 

Smith & Levy, 2011; Staub, Grant, Astheimer, & Cohen, 2015). These include, for example, 

potential differences in the type of mechanisms involved in implicit prediction during language 

processing and those engaged in explicitly filling in blank completions in a production (cloze) 

task (Smith & Levy, 2011). Here we focus on two other related issues (as also discussed by 

Smith & Levy, 2013 for reading time analyses). First, the precision of cloze probability estimates 

is a direct function of the number of cloze completions obtained in the norming study. For 

example, Nieuwland at al. (2017) obtained cloze judgments from 44 participants for the articles, 

and 30 participants for the nouns. This corresponds to a maximum precision of 1/44 = 0.022 for 

the articles and 1/30 = 0.033 for the nouns. The same holds for DeLong et al. (2005), who 

collected data from 30 participants for both articles and nouns. Second, as can be seen in Figure 

1, a large proportion of the total test items have a cloze probability of 0 (in DeLong et al., 2005: 

30% for the articles, 27.5% for the nouns; in Nieuwland et al., 2017: 20% for the articles, 26.25% 

for the nouns). But these items do not really have the same predictability, and so, for these items, 

there is a complete loss of any precision.3  

                                                
3 This issue is hard to overcome with cloze tasks: the number of participants required to obtain reliable larger-than-zero counts 

for low probability words would often be in the order of thousands or tens of thousands.  
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Figure 1. Histogram of cloze probabilities for articles (left panels) and nouns (right panels) for 

both expected (red) and unexpected (blue) items collected by both DeLong et al. (2005) (upper 

panels) and Nieuwland et al. (2017) (lower panels). We note that the leftmost bars contain not 

only items with 0 cloze probability, but also items with very small, but positive cloze probability. 

 

Both of these issues—limited precision and complete loss of any precision for a large proportion 

of items (those with cloze probabilities of 0)— are methodological concerns. These concerns 

weigh particularly heavily given that there is now more and more evidence suggesting that 

behavioral and neural signatures of disconfirmed expectations are primarily driven by small 

differences low predictability continuations, as we discuss next. 
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Probability vs. Surprisal. Although the difference in cloze probability between 0 and .022 may 

seem trivial, it is of concern because some researchers have proposed that the surprisal of a word 

may be a better predictor of processing difficulty than raw probability (Hale, 2001; Levy, 2005). 

A word’s surprisal—i.e., the logarithm transform of the reciprocal of its probability—is a 

measure of ‘information’: the amount of information gained upon seeing a word. Because of the 

logarithmic transform, differences between small probabilities close to zero are therefore 

expected to make a big difference in influencing N400 modulation: the surprisal of a perfectly 

predictable word with a probability of 1 is 0 bits, and, for each halving in probability, the 

surprisal doubles. That is, if a response (such as the amplitude of the N400) is linear in surprisal, 

differences between small probabilities are expected to affect this response more strongly than 

equal differences between large probabilities. For example, for probabilities of .5 vs. .25, the 

surprisal is 1 vs. 2 bits, respectively; for probabilities of .015625 vs. .0078125, the surprisal is 6 

vs. 7 bits. This means that it is critical to have high precision for low probability events. But that 

is exactly where cloze probabilities fail.  

 

Empirical support for the claim that surprisal is a better index of probabilistic effects on 

processing difficulty than raw probability comes primarily from behavioral studies of reading 

times, which typically have estimated surprisal from language databases (e.g., Smith & Levy, 

2013; see also Demberg & Keller, 2008; Frank & Bod, 2011; Linzen & Jaeger, 2016). A few 

ERP studies have also shown that surprisal predicts the amplitude of the N400 (Delaney-Busch 

et al., 2017; Frank, Galli, & Vigliocco, 2015; see also Rabovsky, Hansen, & Mcclelland, 2016; 

Willems, Frank, Nijhof, Hagoort, & Van Den Bosch, 2016). Most of these studies did not 

directly compared surprisal with raw probability estimates. However, in a recent ERP semantic 
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priming study, Delaney-Busch, Morgan, Lau & Kuperberg (2017) found that word surprisal was 

a better predictor of N400 amplitude than word probability (Delaney-Busch, Morgan, Lau & 

Kuperberg, 2017; see also Wlotko & Federmeier, 2012 for further evidence of a non-linear 

relationship between cloze probability and N400 amplitude). 

 

Based on this literature, it would thus seem that log-transformed cloze probabilities, rather than 

raw cloze probabilities, might be a better predictor of N400 amplitude. We thus conducted one 

post-hoc analysis for both the article and the noun using the data generously provided by 

Nieuwland et al. (2017). We repeated the trial-based analysis (across all nine labs, which used 

the -100~0ms baseline correction and no filtering, and in which lab was excluded as a predictor), 

but with log-transformed rather than raw cloze probabilities as the dependent measure. 4  

 

We found log-transformed cloze probabilities of the noun to be a significant predictor of N400 

amplitude on the noun (p < 1.02 * 10-14). This effect size was larger (t =10.34) than for raw cloze 

probabilities (t = 9.26). Critically, we also found that log-transformed cloze probabilities of the 

article were a significant predictor of the N400 amplitude on the article (p = 0.015). This latter 

effect remained significant when we repeated the analysis, including lab both as a fixed effect 

(p=0.015), and as a random effect with a by-lab intercepts and slopes for cloze effect (p=0.016), 

and after correcting for the family-wise Type I error rate due to the multiple comparisons.5 That 

                                                
4 Log-transforming cloze probabilities requires smoothing to deal with items with 0 cloze probabilities. We follow a standard 

approach to this smoothing problem (plus 1 smoothing with a uniform prior). A better solution to be considered in future studies 

is to elicit cloze judgments from many more participants, so as to avoid/reduce this problem altogether. 

5 Log cloze probabilities are also a significant predictor for -200~0ms baseline-corrected N400 amplitudes (p = 0.047), and show 

the same numerical trend when the -500~0ms baseline was used (p = 0.277) and when the -100~0ms baseline was used in 
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is, unlike raw cloze probabilities (reported by Nieuwland et al. 2017), log-transformed cloze 

probabilities yield an effect on the N400 amplitude on both the noun and the article. We also ran 

separate regression analyses for each lab separately, again with log-transformed cloze 

probabilities. As shown in Figure 2, the effect holds in 8 out of the 9 laboratories that 

participated in Nieuwland et al. (2017). 

  

Figure 2. Relationship between log-transformed cloze probabilities and amplitude of N400 on 

articles for each of the nine labs in Nieuwland et al. (2017). 

 

                                                                                                                                                       
combination with 0.1 high-pass filtering (p = 0.15). We note that the analysis reported in the main text was the first we performed. 

It corresponds to the approach advocated by Nieuwland and colleagues. 
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Looking beyond 2005 

In sum, Nieuwland and colleagues present an impressive effort to replicate an important effect in 

the field. However, we think that their conclusion that their data provides no evidence for 

prediction on the article may be premature. First, their design and analyses deviate from those of 

the original study in ways that might reduce the expected effect size for the N400 evoked at the 

article. Second, one of the Bayesian analyses would, if anything, seem to support, rather than call 

into question, the presence of an effect. And third, recent findings suggest that log-transformed 

cloze probability (or surprisal) should be a better predictor of N400 amplitude. And, indeed, once 

log-transformed, rather than raw, cloze probabilities are analyzed, we find a significant effect on 

both the noun and the article in 8 out of 9 of the labs that participated in the replication attempt. 

 

In the remainder of this paper, we take a step back and consider the design of DeLong’s original 

study in relation to the three questions that we posed at the beginning of this paper about the 

nature of prediction in language processing (see also Kuperberg & Jaeger, 2016). We will argue 

that a detailed consideration of these issues in relation to DeLong et al.’s design, poses important 

challenges that future work will need to address. Specifically, we raise questions about how best 

to assess any effects of prediction—both in relation to the ERP components of interest, and in 

relation to how indices of probabilistic prediction can be operationalized and formalized. We 

also discuss different interpretations of the effect that DeLong et al. (2005) report. For the 

purpose of this discussion, we take the effect that they report at face value, and derive additional 

predictions that future work (or re-analyses of existing data) could assess.  
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What is the timing of prediction in relation to the bottom-up input? 

 Traditionally, a stark distinction has been drawn between ‘anticipatory processing’ (e.g. DeLong 

et al., 2005; Kamide, 2008), which is sometimes simply referred to as ‘prediction’, e.g. 

Federmeier, 2007) and ‘integration’ (Federmeier, 2007; Kamide, 2008; Kuperberg & Jaeger, 

2016; Van Petten & Luka, 2012). In this context, anticipatory processing refers to the pre-

activation of relevant information before new bottom-up information becomes available, while 

integration refers to activity at the point at which new bottom-up information becomes available. 

Of course, ‘integration’ will be influenced by anticipatory activity. Indeed, as pointed out by 

Kuperberg & Jaeger (2016), it is logically impossible to explain effects of contextual 

predictability on processing a new input without assuming that the context has already 

influenced the state of the language processing system prior to this bottom-up input. However, as 

noted by Nieuwland et al. (2017), effects of context have not always been taken as evidence of 

anticipatory processing/pre-activation because they can be taken to index “a mixture of 

attentional and memory retrieval processes [i.e., top-down influences] instigated by the [bottom-

up input] itself” (p. 17). 

 

DeLong et al.’s findings on the article have been taken as evidence for anticipatory processing of 

the predicted noun because they are evident prior to the appearance of this noun. What is not 

often considered, however, is that the ERP signature being measured at the article is not actually 

a pure index of anticipatory processing or pre-activation, but rather a reflection of the interaction 

between such anticipatory activity and activity induced by the appearance of the article itself 

(this is also true of studies with similar designs in which ERPs are measured to a functional 

element whose form is dependent on the predicted word, e.g. Van Berkum et al., 2005; Wicha et 
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al., 2004).6 This is why any interpretation of what drives differential activity at the article must 

carefully consider both the type and the level of representation of the information that is being 

predicted, and what aspects of these predictions become updated when new bottom-up 

information becomes available. This brings us directly to the next point. 

 

The nature and the representational level of information that is predicted  

Most interpretations of DeLong et al. (2005) seem to assume an account in which any ERP effect 

at the article is mediated through anticipatory processing of the noun—both its semantic features 

as well as its phonological properties. We depict one way of elaborating on this position in 

Figure 3. Here, pre-activation of the noun’s semantic features might stem from prediction at a 

still higher-level event representation that is based on the comprehender’s current belief about 

the message that is being conveyed (Kuperberg, 2016; McRae & Matsuki, 2009). This strong 

semantic pre-activation, in turn, leads to pre-activation of the noun’s phonological form, which, 

in turn, leads the comprehender to predict the form of the article. As a result, when the less 

expected article appears, there is increased processing difficulty, leading to differential ERP 

modulation. What is less often discussed, is the level(s) of representation at which such 

processing difficulty on the article is incurred. This has direct implications for how we interpret 

the ERP effect evoked at the article.  

 

                                                
6 When DeLong et al. (2005) was first published, there was already evidence from the visual world paradigm for anticipatory 
processing, which was not dependent on measuring activity that was time-locked to new bottom-up input. This evidence for 
anticipatory processing has been argued by some (Nieuwland et al., 2017; Huettig & Mani, 2016) to critically depend on the 
restricted set of potential candidates that is typical to visual world studies (for evidence against this interpretation, see Dahan, 
Magnuson, & Tanenhaus, 2001; for discussion, see Salverda & Tanenhaus, 2017). Since DeLong’s initial publication, additional 
evidence for anticipatory processing has come from studies reporting differential neural modulation that is not time-locked to 
new bottom-up input (e.g., Boylan et al., 2014; Dikker & Pylkkänen, 2013; Piai et al., 2016; Sohoglu, Peelle, Carlyon, & Davis, 
2012).  
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In theory, an ERP on the article could reflect updating of any or all of the three types of 

predictions outlined above and as shown in Figure 3: (1) predictions about the form of the article, 

(2) predictions about the form of the noun, and/or (3) predictions about the semantic features of 

the noun. Of these three possibilities, (3) would provide the best explanation of why DeLong et 

al. (2005) reported that the effect on the article had an N400-like temporal and topographic 

distribution (but see below for discussion of a reanalysis of the same data reported by DeLong, 

Groppe, Urbach, & Kutas, 2012). Given that the N400 is known to reflect processing at a 

semantic level (Kutas & Federmeier, 2011), despite being measured on the article, the implicit 

assumption seems to be that its modulation reflects updating of predictions about semantic 

properties of the upcoming noun.  

 

However, the focus on the N400 doesn’t rule out the possibility that there may also be earlier 

effects of updating form predictions (possibilities 1 and 2). In fact, an argument along the lines of 

Figure 3 presupposes form prediction of both the noun (as discussed by both DeLong et al., 2005 

and by Nieuwland et al., 2017) as well as of the article. However, the neural indices of any form 

prediction have not yet been systematically assessed in this particular paradigm. We elaborate on 

this point below.  

 

Any updating of orthographic or phonological form predictions would likely manifest on ERP 

components that are distinct from the classic N400, with earlier peaks and possibly different 

scalp distributions. Several such ERP components have been discussed. These include the N250 

(Brothers, Swaab, & Traxler, 2015; Kuperberg, 2013; Lau et al., 2013, see Grainger & Holcomb, 

2009 for characterization of the N250 in relation to masked priming paradigms), the 
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phonological mismatch negativity (Connolly & Phillips, 1994) or the N200 (van den Brink, 

Brown, & Hagoort, 2001) that are associated with phonemic mismatches in spoken language, the 

P2, which has been linked to the top-down attentionally-mediated extraction of visual features 

(e.g. Federmeier, Mai, & Kutas, 2005, see also Paczynski & Kuperberg, 2012), and a slightly 

later positive-going component that has been associated with the confirmation of strong 

predictions of idioms or frequent collocations and posited to reflect the P300 (Bornkessel-

Schlesewsky et al., 2015; Molinaro & Carreiras, 2010; Roehm, Bornkessel-Schlesewsky, Rösler, 

& Schlesewsky, 2007; Vespignani, Canal, Molinaro, Fonda, & Cacciari, 2009). The peaks of 

some of these early components are sometimes included within the time windows used to assess 

the N400 (see Lau et al., 2013, for discussion), and, indeed, their peaks may have been included 

within the time-window of 200-500ms selected by DeLong et al. (2005) and Nieuwland et al. 

(2017) to characterize the N400 in their analyses. However, they can be dissociated functionally 

from the N400, and they sometimes have broader and/or more frontal scalp distributions than the 

classic centro-parietally distribution associated with the N400. Interestingly, a reanalysis of 

DeLong’s 2005 data appears in a subsequent paper reported by DeLong et al., (2012: the young 

controls). Here, in addition to conventional analyses that collapsed across time windows, the 

authors used mass univariate analyses, which allows for more flexible testing to identify precise 

time-course and spatial distributions while still maintaining an appropriate Type I error rate 

(Groppe, Urbach, & Kutas, 2011; Maris & Oostenveld, 2007; see Fields, 2017, for a recent 

discussion). This analysis showed that the effect on the article did actually have a somewhat 

different time-course and scalp distribution from the effect observed on the noun: its peak was at 

medial frontal sites and it was significant between 254ms and 357ms.  
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Some researchers have also reported contextual predictability effects on the modulation of still 

earlier components that peak before 200ms, linking this to prediction at the level of early 

perceptual visual or auditory features. In ERP studies, for example, very early effects have been 

reported in both studies of reading (e.g., Kim & Lai, 2012; Sereno, Brewer, O’Donnell, & 

Donnell, 2003), and spoken language comprehension (Groppe et al., 2010). And, in MEG, 

contextual information can sometimes influence modulation of the visual M1 component evoked 

by incoming words (Dikker, Rabagliati, Farmer, & Pylkkänen, 2010). Most of the evidence for 

these very early effects comes from studies in which the input violates very strong structural 

constraints of the preceding context (Dikker et al., 2010) or very highly semantically 

constraining contexts (Dikker & Pylkkanen, 2011).7 Interestingly, examination of Figure 1 in the 

original study by DeLong and colleagues suggests some divergence in the waveforms evoked by 

the high versus low cloze probability articles before the 200ms time window. It is possible that, 

if reliable, this early differences reflects prediction updating of either the article’s or the noun’s 

visual features. On the other hand, as pointed out by Ito and colleagues (Ito et al., 2017, p. 10-11), 

some electrode sites in DeLong et al.’s (2005) dataset also show evidence of divergence between 

the two waveforms before the onset of the article (see Figure 2A from DeLong et al., 2012, 

which shows the same data with a pre-stimulus baseline). Ito et al., (2017) attribute this to “slow 

signal drift” (also observed in some of the datasets analyzed by Nieuwland et al., 2017, p. 10). 

Whether this pre-stimulus effect reflects artifact, or whether it reflected a neural correlate of 

                                                
7 We note that such early effects need to be interpreted with caution: early ERP and MEG components are highly sensitive to 

differences across conditions in bottom-up perceptual inputs, and even when these features are tightly counterbalanced across 

conditions, differences may arise as a result of excluding trials with artifact during preprocessing, leading to the spurious early 

effects. 
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anticipatory processing that manifests even before the onset of the article remains an open 

question.  

 

 

Figure 3. Illustration of a possible predictive chain that would result in differential ERP 

modulation when the article is encountered. Predictions of the event representation lead to 

predictions about the semantic properties of the noun (the next referent and head of the next 

syntactic phrase), which spell out into form predictions of the noun, and form predictions of the 

article (represented with blue arrows). When the article appears, predictions may be updated at 

any of these levels (represented with red arrows and labeled by the numbers in parentheses), as 

outlined in the text.  

 

Given these arguments, we consider it important that future work directly assesses the critical 

role of form predictions outlined in Figure 3, and other evidence of form prediction further 

(although this would not necessarily have to pursued within the DeLong et al., paradigm). 

Because the earlier ERP components linked to form processing are less well characterized than 

context

noun	
semantics

noun	
form

article
form

predicts

predicts

The	day	was	breezy	so	the	boy	
went	outside	to	fly	… a kite

noun	
form

predicts

event
representation

predicts

…

(1)

…

(2)

(3)

available for use under a CC0 license. 
peer-reviewed) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made 

The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/143750doi: bioRxiv preprint first posted online May. 30, 2017; 

http://dx.doi.org/10.1101/143750


 
 

-31- 

the N400, one cannot simply collapse across a priori time windows and electrode sites to test 

relevant hypotheses. However, the use of mass univariate analyses provides a potentially 

powerful alternative way of testing relevant hypotheses while still correcting for multiple 

comparisons (Groppe et al., 2011; Maris & Oostenveld, 2007). More generally, we consider it 

critical to spell out specific hypotheses about the nature of the predictive chains hypothesized to 

underlie effects of context in the ERP signal.8  

 

Is prediction probablistic in nature?  

DeLong et al.’s study was designed to test the hypothesis that anticipatory processing, as 

reflected by ERP modulation at the point of the article, was probabilistic and graded in nature. 

The precise level and nature of the processing actually reflected by ERP modulation on the 

article is not spelled out. However, as discussed above, a common interpretation of the N400-like 

effect reported by DeLong and colleagues is that it reflects anticipatory semantic processing. The 

gradient measure of prediction strength that DeLong et al. (2005)—and, thus also Nieuwland et 

al. (2017)—employ to test this hypothesis is the probability of the article itself (which, when log-

transformed, translates on to the surprisal of the article). To the best of our knowledge, neither 

Delong and colleagues, nor subsequent work, has considered the question of why the probability 

of the article itself would be a good index of degree to which semantic predictions of the 

upcoming noun are updated during the processing of the article. As we show next, a principled 

                                                
8 In this context, we note that it is possible that form predictions of the article proceed directly on the basis of contextual 

information without being mediated through the noun semantics (e.g., a direct gradient association between ngram or latent 

semantic presentations of the context with a specific form of the article). As the indefinite article is generally assumed not to 

evoke event or semantic processing, an argument along these lines would have to explain the presense of a N400-like response—

e.g., as reflecting a later signature of form prediction (see above). 
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probabilistic measure of the degree of semantic prediction updating on the article differs from—

but is correlated with—the surprisal of the article.  

 

In the language of probability theory, updates of predictions upon receiving new information can 

be formalized as the degree to which comprehenders change their beliefs. In the present case, 

this should be a function of the objective shift in the probability distribution over all noun 

semantics from before seeing the article to after seeing the article (see Figure 4).  

 

 

Figure 4. Predictions about upcoming noun shift upon observing the article. 

 

One principled probabilistic measure of this shift in predictions about the upcoming noun 

semantics from before to after encountering the article, is the relative entropy or Kullback-

Leibler divergence between the distribution over all possible upcoming noun semantics before 

and after seeing the article. This is also known as Bayesian surprise (Doya, Ishii, Pouget, & Rao, 
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2007; Itti & Baldi, 2009). For example, after seeing the article ‘a’, the Bayesian surprise about 

the upcoming noun semantics (NOUNi) can be expressed as:9 

 

Equation 1 

D"# = 		 p NOUN*	 	'a', context) 	∗ 	log	 	
p NOUN*	 	'a', context)
p NOUN*	 	context)

	
*

 

 

Bayesian surprise has been used successfully to, for example, model the cost of incremental 

argument integration (Hörberg, 2016), and recent simulations using a neural network model link 

Bayesian surprise to the pattern of N400 modulation during sentence comprehension (Rabovsky 

et al., 2016). However, to the best of our knowledge, no analysis so far has estimated the effect 

of Bayesian surprise on the N400-like response on the article in DeLong et al.’s (2005) paradigm. 

Upon encountering the article, ‘a’, the predicted probability of each possible noun semantics 

changes from p NOUN8	 	context) to p 	NOUN8	 	'a', context), where the latter can be re-expressed 

as: 

 

Equation 2 

p 	NOUN8	 	'a', context) = 		
p 'a'	 	NOUN*, context) ∗ 	p NOUN*	 	context)

p 'a'	 	context)
 

 

                                                
9 The equations we provide describe the updating of predictions about the upcoming noun semantics. We are not considering 

uncertainty about at what point in the sentence the noun (form or syntactic category) will appear. This strikes us as a reasonable 

assumption given that predictions can be assumed to be generated on the basis of the message-level (or similar) representation. 
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Inserting (E2) back into (E1) to calculate the Bayesian surprise (over the distribution of noun 

semantics) incurred while processing the article, we get the (E3): 

 

Equation 3 

D"# = 		
p 	'a' 	NOUN*, context) ∗ 	p NOUN*	 context)

p 	'a' 	context
	

*

∗ log
p	 	'a' 	NOUN*, context) ∗ 	p NOUN*	 context)

p NOUN*	 context) ∗ 	p 	'a' 	context
	

= 		 p NOUN*	 context) ∗
p	 	'a'	 	NOUN*, context)	

p 	'a' 		context)
	∗ 	log	 	

p	 	'a'	 	NOUN*, context)
	p 	'a'	 		context)

*

 

 

, which can be further reorganized (for details, see appendix): 

 

Equation 4 

D"# = 		 p NOUN*	 context) ∗
p	 	'a'	 	NOUN*, context)	

p 	'a' 		context)
	∗ 	log	 p	 	'a'	 	NOUN*, context)

*

− 	log	 p	 	'a'	 context) 

 

That is, the Bayesian surprise incurred on the article is the sum of the article’s surprisal, 

−log	 p	 	'a'	 context), plus another component, the first term in (E4). The Bayesian surprise 

over the noun semantics thus differs from both the probability of the article itself, 

p	 	'a'	 	context), and the article’s surprisal, log 1 / p	 	'a'	 	context). Unlike the article’s 

surprisal, the Bayesian surprise also depends on probability of article form given each predicted 

noun semantics, p	 	'a'	 	NOUN*, context). The two indices are, however, closely related.  
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First, since log	 p	 	'a'	 	NOUN*, context) is always smaller than or equal to zero, the first term in 

(E4) will always be negative. The Bayesian surprise over the noun semantics on the article will 

thus never be larger than the surprisal of the article. Second, for contexts in which the article 

depends deterministically on the noun, i.e., p	 	'a'	 	NOUN*, context) always equals either 1 or 0, 

the Bayesian surprise over the noun semantics reduces to the article’s surprisal. That is, for those 

types of contexts, D"# = −	log	 p	 	'a'	 context) (for proof, see appendix).10  

 

Such a deterministic relation is, however, unlikely to hold for the stimuli in DeLong et al. (2005) 

and Nieuwland et al. (2017): the form of the English indefinite article is determined by the word 

that immediately follows it, and that word is not always the noun (Nieuwland and colleagues 

estimate the probability of a noun occurring directly after an article to be only .33; our own 

estimates from different corpora of American English ranged from ~.3 in writing to ~.7 in 

speech). This raises the question how the article’s surprisal is related to the Bayesian surprise 

over the noun semantics in the data sets of DeLong et al. (2005) and Nieuwland et al. (2017).  

 

We therefore explored the relation between the two probabilistic indices based on a simple 

language model and data from natural language use.11 Specifically, we extracted all non-sentence 

                                                
10 In the appendix we also show that, for this very reason, Bayesian surprise completely reduces to the article’s surprisal for 

certain agreement phenomena for which anticipatory processing has also been studied (Van Berkum et al., 2005; Wicha et al., 

2004). For those agreement systems, the noun does deterministically affect the form of the article. 

11 An alternative would be to estimate the relation between the two indices specifically for the stimuli in the experiment, based on 

the raw cloze responses. However, this approach suffers from data sparsity for reasons related to those raised in our discussion of 

cloze norms above (this was confirmed after annotating the raw cloze reponses from DeLong et al., 2005). 
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initial noun phrases from three corpora of British and American English. We set the context in 

(E3) to the one word immediately preceding the noun phrase to reduce data sparsity. Table 1 lists 

the number of context-noun combinations and the distribution of the frequencies of these 

combinations for each corpus. For each context, we calculated the surprisal of ‘a’ (and ‘an’) as 

well as the Bayesian surprise over the distribution of nouns on ‘a’ (and ‘an’). As shown in Figure 

5, these two probabilistic indices are highly correlated.  

 

*** INSERT TABLE 1 approximately HERE *** 

Table 1. Characteristics of different corpora adopted in the analyses. 

 

*** INSERT FIGURE 5 approximately HERE *** 

Figure 5. Correlation between the article’s surprisal and the Bayesian surprise over the 

distribution of the upcoming noun incurred on the article. Both indices were estimated for four 

separate corpora. For details, see text. Each dot represents a context immediately preceding a 

noun phrase. Blue line shows non-parametric smoother predicting Bayesian surprise from 

surprisal. Top: data for ‘a’. Bottom: data for ‘an’. 

 

*** INSERT FIGURE 6 approximately HERE *** 

Figure 6. Correlation between the article’s predictability (bi-gram probability) and the Bayesian 

surprise over the distribution of the upcoming noun incurred on the article. Both indices were 

estimated for four separate corpora. For details, see text. Each dot represents a context 

immediately preceding a noun phrase. Blue line shows non-parametric smoother predicting 

Bayesian surprise from article predictability. Top: data for ‘a’. Bottom: data for ‘an’. 
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We emphasize that our estimates of the two indices are crude, potentially over-estimating the 

correlation between them. We also emphasize that here we calculated the Kullback-Leibler 

divergence over noun forms from before having seen the article (i.e., based on the one-word 

preceding context) to after having seen the article. With the types of stimuli used by DeLong et 

al. (2005), the distribution of noun forms approximates the distribution of noun semantics. This 

assumption, however, is not always appropriate, as the predictability of a given word-form can 

be dissociated from the predictability of its semantic features. And, critically, the amplitude of 

the N400 is primarily sensitive to the latter (see also Kuperberg, 2016 for recent discussion). Still, 

to the extent that similarly high correlations between this measure of Bayesian surprise, and 

surprisal of the article hold for the stimuli in DeLong et al. (2005) and Nieuwland et al. (2017), 

this would provide an explanation for why the article’s surprisal correlated with the N400—a 

neural response that is typically associated with semantic processing. 

 

When one inspects the relationship between the predictability of the article (as shown in Figure 

6), it is clear that Bayesian surprise does not have a linear relationship with article predictability. 

Despite so, Bayesian surprise is also correlated with the predictability of the article, although the 

correlation is weaker than that with the surprisal of the article. This might explain why, although 

article predictability is not directly related to N400 amplitude, when DeLong et al. (2005) found 

correlation between N400 amplitude and article predictability and Nieuwland et al. (2017) found 

a trend in the same direction in their by-trial level analysis.  
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Summary  

Regardless of questions about its replicability, the findings of DeLong et al. (2005) inspire new 

ways of thinking about prediction. For the goals of the original study, when there was still debate 

about whether or not anticipatory semantic processing occurred at all during language 

comprehension, it was arguably not critical to determine the exact nature of the computational 

processes reflected by the ERP component evoked by the article. Rather, the data presented by 

DeLong et al. (2005), along with that of other studies employing similar designs (e.g. Van 

Berkum et al., 2005; Wicha et al., 2004) was important in that it provided evidence that 

probabilistic anticipatory processing happened at all.  

 

Since this original publication, however, the field has advanced and the questions that need to be 

asked next are of a more specific nature. The point of discussion presented above is to illustrate 

the value of a careful consideration of the nature of prediction in guiding hypotheses and 

interpretation. We believe that it is important for future work to distinguish between predictive 

processes at different levels of representation. The strongest tests of such processes will commit 

to testing precise relationships between probabilistic indices and (sets of) ERP components that 

are thought to reflect processing at the level of representation linked to the hypothesized 

predictive process. Specifically, we have argued that, so long as any N400 modulation on the 

article is interpreted as reflecting updating of predictions about the noun’s semantic properties, 

then Bayesian surprise (reflecting shifts in predictions about the upcoming noun from before to 

after the article is encountered) is a more appropriate probabilistic index than the cloze 

probability of the article. While we have also shown that the article’s surprisal provides an easy 
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approximation of Bayesian surprise over the noun’s semantics incurred on the article, the two 

indices are not the same either (cf. Figure 5), and future studies might be able to tease them apart.  

 

If one is interested in whether comprehenders are updating their predictions about the form 

features of the noun, then Bayesian surprise would also be the predictor of interest. In this case, 

however, it would be more appropriate to examine its relationship with the modulation of earlier 

ERP components that are associated with form processing, and that have a different temporal and 

topographic distribution than the N400 effect, as discussed above. If, however, one is interested 

in updating of predictions about the form of the article (rather than noun), then the cloze 

probability or surprisal of the article is the most principled predictor, and, once again, it would be 

more appropriate to examine its relationship with earlier ERP components.  

 

Conclusions  

In summary, we think that it is premature to conclude that that Nieuwland et al.’s dataset 

provides no evidence for anticipatory processing at the point of the article. In this paper, we have 

discussed several differences between the impressive replication effort reported in Nieuwland et 

al. (2017) and the original study by DeLong and colleagues. Further, our own re-analysis of the 

data obtained by Nieuwland and colleagues finds a significant correlation between the amplitude 

of the N400 on the article and the article’s surprisal (rather than its raw cloze probability). The 

article’s surprisal would be a principled probabilistic index of predictions of the article’s form. 

We also showed that the article’s surprisal is very strongly correlated with a principled 

probabilistic index of the updating of semantic predictions about the upcoming noun (the 

Bayesian surprise or Kullback-Leibler divergence).  
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On the other hand, we do echo Nieuwland and colleagues’ emphasis on the importance of future 

studies probing prediction at the level of phonological form. As discussed above, the current 

findings leave open the question of whether the ERP effects observed by DeLong and colleagues 

(2005, see also DeLong et al., 2012), as well as the effects revealed by our re-analysis of 

Nieuwland et al. (2017), should be attributed to updating at the level of form or semantic features 

(or both), and whether these effects will withstand further scrutiny. Indeed, the question of 

whether form prediction exists, and what role in plays in language comprehension, continues to 

be a matter of great interest. Beyond language processing, some have called into question that 

higher-level expectation ever spells out into low-level form prediction (cf. Firestone & Scholl, 

2015 and responses to it). Within research on spoken language processing, there is a lively 

debate about the existence of feedback during word recognition. While some models assume 

feedback from lexical representations to pre-lexical processes (Elman & McClelland, 1988; 

Magnuson, McMurray, Tanenhaus, & Aslin, 2003; McClelland & Elman, 1986), others have 

argued that existing evidence can be explained without reference to feedback (McQueen, Cutler, 

& Norris, 2003; Norris, McQueen, & Cutler, 2000; Norris & McQueen, 2008; Norris, McQueen, 

& Cutler, 2015); for discussion, see also Kuperberg & Jaeger, 2016). While either view is 

compatible with some types of form prediction (e.g., form prediction based on phonological 

context, McQueen et al., 2003), the latter explicitly argues against influences of lexical—and 

thus semantic—influences on early form processing.  

 

More generally, these issues bear upon the two extreme positions that Nieuwland et al. (2017) 

argue against in their paper. The first is that we always “pre-activate words at all levels of 
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representation in a routine and implicit (i.e., non-strategic) fashion”, and the second is that 

prediction down to lexical form is necessarily associated with the prediction-through-language-

production (Pickering & Garrod, 2013). Regarding the first claim, this seems, to us, somewhat of 

a strawman. Like DeLong et al. (2017b), we are not aware of anyone who has made the claim 

that we necessarily or always predict at every level of representation during comprehension. 

Regarding the second claim, prediction at the level of form does not necessarily imply that the 

production system is used to generate predictions during comprehension. Rather, we think that it 

is more likely that both comprehenders and producers draw upon common generative models, 

where generative neither implies nor rules out the involvement of production circuits (Brown & 

Kuperberg, 2015; Jaeger & Ferreira, 2013; Kleinschmidt & Jaeger, 2015).  

 

The real question at stake, we submit, is not whether we can engage in probabilistic prediction, 

but to what degree and under what circumstances, and to what level(s) of representation (see 

Kuperberg & Jaeger, 2016 for discussion). This recent debate between Nieuwland and colleagues 

and DeLong and colleagues offers a welcome opportunity to revisit and clarify these questions, 

which is a necessary step towards understanding the nature of predictive language 

comprehension.  
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Appendix 

Appendix A Bayesian surprise and article surprisal 

In this appendix, we derive the relations between the article’s surprisal and the Bayesian surprise 

over the noun semantics on the article described in the main text. To get from (E8) to (E9):  

 

Equation 5 

D"# = 		 p NOUN*	 context) ∗
p	 	'a'	 	NOUN*, context)	

p 	'a' 		context)
	∗ 	log	 p	 	'a'	 	NOUN*, context)

*

− p NOUN*	 context) ∗
p	 	'a'	 	NOUN*, context)	

p 	'a' 		context)
	∗ 	log	 p	 	'a'	 context)

*

 

=		 p NOUN*	 context) ∗
p	 	'a'	 	NOUN*, context)	

p 	'a' 		context)
	∗ 	log	 p	 	'a'	 	NOUN*, context)

*

− 	log	 p	 	'a'	 context) ∗
p NOUN*	 context) ∗ p	 	'a'	 	NOUN*, context)	

p 	'a' 		context)
	

*

 

 

Since p NOUN*	 context) ∗ p	 	'a'	 	NOUN*, context)* = p('a'	|context), the second term can be 

further simplified, yielding: 

 

Equation 6 

D"# = 		 p NOUN*	 context) ∗
p	 	'a'	 	NOUN*, context)	

p 	'a' 		context)
	∗ 	log	 p	 	'a'	 	NOUN*, context)

*

− 	log	 p	 	'a'	 context) 
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To show that this reduces to the article’s surprisal, when the article depends deterministically on 

the noun, i.e., p	 	'a'	 	NOUN*, context) always equals either 1 or 0: 

 

Equation 7 

If p 	'a'	 	NOUN*, context) = 0, 

p	 	'a'	 	NOUN*, context) ∗ log p	 	'a'	 	NOUN*, context) = 0 ∗ log 0 = 0 

If p 	'a'	 	NOUN*, context) = 1, 

p	 	'a'	 	NOUN*, context) ∗ log p	 	'a'	 	NOUN*, context) = 1 ∗ log 1 = 0 

Thus, when ∀@	p 	'a'	 	NOUN*, context) ∈ 0,1 , then: 

D"# = 		 p NOUN*	 context) ∗
p	 	'a'	 	NOUN*, context)	

p 	'a' 		context)
	∗ 	log	 p	 	'a'	 	NOUN*, context)

*

− 	log	 p	 	'a'	 context) 

=		 p NOUN*	 context) ∗
0	

p 	'a' 		context)
	−

*

	log	 p	 	'a'	 context)	

= 	−	log	 p	 	'a'	 context) 

Appendix B Bayesian surprise and article surprisal for (certain) agreement systems 

In some languages with agreement, the form of prenominal articles is determined by the noun 

regardless of whether the noun immediately follows the article. In those environments, the 

surprisal of the article is identical to the Bayesian surprise with regard to the noun, for the 

reasons outlined in appendix A. For example, when the predicted noun is masculine, the 

probability of encounter a masculine article p masc	 	noun*, context) will always equal 1. Hence 

we can derive the Bayesian surprise upon seeing a masculine article as:  
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Equation 8 

D"# = 		 p NOUN8	 	masc, context) 	∗ 	log	 	
p NOUN*	 	masc, context)
p NOUN*	 	context)*

 

=
p masc	 	NOUN*, context) ∗ 	p NOUN*	 context)

p 	masc	 	context)	
	

*

∗ log
p	 masc	 	NOUN*, context) ∗ 	p NOUN*	 context)

p noun*	 context) ∗ 	p 	masc	 	context)
	

=
p masc	 	NOUN*, context) ∗ 	p NOUN*	 context)

p masc	 	context)
	∗ log

p masc	 	NOUN*, context)
	p masc	 		context)

*

	

Since the gender agreement between the article and the noun is not affected by 

intervening elements, p 	masc	 	NOUN*, context)	equals one if noun8 is masculine, and 

equals zero if noun8 is not masculine. Therefore the Bayesian surprise can be further 

simplified as:  

D"# =
p NOUN*	 context)
p masc	 	context)

	∗ log
1

	p masc	 	context)
				

EFGH	IJKIG

+	
0

p masc	 	context)
	∗ log

0
	p masc	 	context)

				
MNE*	IJKIG

	

= 	
1

p masc	 	context)
	∗ log

1
	p masc	 		context)

∗ 	 p NOUN*	 	context)	
EFGH	IJKIG

	

= log
1

	p masc	 	context)
∗ 	
p masc	 	context)
p masc	 	context)

	

= − log 	p masc	 	context) 
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For such systems, a correlation between neural responses and the cloze probability (or surprisal) 

of gender-marked articles could thus reflect updating of prediction about the noun’s semantics, 

predictions about the article form, (non-anticipatory) processing of the semantics inherent in the 

gender-marking itself (as pointed out in Nieuwland et al., 2017), or any combination of these. 

Interestingly, studies on predictive processing in these types of agreement systems have found a 

variety of neural signatures (e.g., Otten et al., 2007; Otten & Van Berkum, 2007, 2008; Van 

Berkum et al., 2005; Wicha et al., 2004; for discussion, see Nieuwland et al., 2017). One possible 

explanation of this is that stimulus- and design-specific differences between these studies lead to 

differences in the extent to which these different possibilities are reflected in the ERPs. 
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Corpus Name Citation 
Variety of 

English 
Genre Mode #Words 

# One-
word 

Contexts 

log10 Context 
Frequency 
Mean (SD) 

Switchboard 

Marcus, Santorini, 
Marcinkiewicz, & 

Taylor, 1999 

American Conversation Spoken ~800,000 660 1.28 (0.60) 

Brown American Mixed Written ~1 million 736 1.16 (0.54) 

Wall Street 
Journal American Newspaper Written ~2 million 1869 1.18 (0.50) 

British National 
Corpus 

British National Corpus 
Consortium, 2007 

British Mixed Written ~90 million 20943 1.47 (0.70) 

Table 2. Characteristics of different copora adopted in the analysis
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Figure 5. Correlation between the article’s surprisal and the Bayesian surprise over the 
distribution of the upcoming noun incurred on the article. Both indices were estimated for four 
separate corpora. For details, see text. Each dot represents a context immediately preceding a 
noun phrase. Blue line shows non-parametric smoother predicting Bayesian surprise from 
surprisal. Top: data for ‘a’. Bottom: data for ‘an’. 
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Figure 6. Correlation between the article’s predictability (bi-gram probability) and the Bayesian 
surprise over the distribution of the upcoming noun incurred on the article. Both indices were 
estimated for four separate corpora. For details, see text. Each dot represents a context 
immediately preceding a noun phrase. Blue line shows non-parametric smoother predicting 
Bayesian surprise from article predictability. Top: data for ‘a’. Bottom: data for ‘an’. 
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