Our brains rapidly map incoming language onto what we hold to be true. Yet there are claims that such integration and verification processes are delayed in sentences containing negation words like not. However, studies have often confounded whether a statement is true and whether it is a natural thing to say during normal communication. In an event-related potential (ERP) experiment, we aimed to disentangle effects of truth value and pragmatic licensing on the comprehension of affirmative and negated real-world statements. As in affirmative sentences, false words elicited a larger N400 ERP than did true words in pragmatically licensed negated sentences (e.g., "In moderation, drinking red wine isn’t bad/good..."), whereas true and false words elicited similar responses in unlicensed negated sentences (e.g., "A baby bunny’s fur isn’t very hard/soft..."). These results suggest that negation poses no principled obstacle for readers to immediately relate incoming words to what they hold to be true.
- Home
- Pragmatics
Pragmatics
In two event-related potential (ERP) experiments, we determined to what extent Grice’s maxim of informativeness as well as pragmatic ability contributes to the incremental build-up of sentence meaning, by examining the impact of underinformative versus informative scalar statements (e.g. "Some people have lungs/pets, and…") on the N400 event-related potential (ERP), an electrophysiological index of semantic processing. In Experiment 1, only pragmatically skilled participants (as indexed by the Autism Quotient Communication subscale) showed a larger N400 to underinformative statements. In Experiment 2, this effect disappeared when the critical words were unfocused so that the local underinformativeness went unnoticed (e.g., "Some people have lungs that…"). Our results suggest that, while pragmatic scalar meaning can incrementally contribute to sentence comprehension, this contribution is dependent on contextual factors, whether these are derived from individual pragmatic abilities or the overall experimental context.
We used event-related potentials (ERPs) to examine the time-course of processing metaphorical and literal sentences in the brain. ERPs were measured to sentence-final (Experiment 1) and mid-sentence (Experiment 2) critical words (CWs) as participants read and made plausibility judgments about familiar nominal metaphors ("A is a B") as well as literal and semantically anomalous sentences of the same form. Unlike the anomalous words, which evoked a robust N400 effect (on the CW in experiments 1 and 2 as well as on the sentence-final word in experiment 2), CWs in the metaphorical, relative to the literal, sentences only evoked an early, localized N400 effect that was over by 400ms after CW onset, suggesting that, by this time, their metaphorical meaning had been accessed. CWs in the metaphorical sentences also evoked a significantly larger LPC (Late Positive Component) than in the literal sentences. We suggest that this LPC reflected additional analysis that resolved a conflict between the implausibility of the literal sentence interpretation and the match between the metaphorical meaning of the CW, the context and stored information within semantic memory, resulting from early access to both literal and figurative meanings of the CWs.
BackgroundPeople with schizophrenia process language in unusual ways, but the causes of these abnormalities are unclear. In particular, it has proven difficult to empirically disentangle explanations based on impairments in the top-down processing of higher-level information from those based on the bottom-up processing of lower-level information.MethodsTo distinguish these accounts, we used visual world eye-tracking, a paradigm that measures spoken language processing during real-world interactions. Participants listened to and then acted out syntactically ambiguous spoken instructions (e.g., “tickle the frog with the feather”, which could either specify how to tickle a frog, or which frog to tickle). We contrasted how 24 people with schizophrenia and 24 demographically-matched controls used two types of lower-level information (prosody and lexical representations) and two types of higher-level information (pragmatic and discourse-level representations) to resolve the ambiguous meanings of these instructions. Eye-tracking allowed us to assess how participants arrived at their interpretation in real time, while recordings of participants’ actions measured how they ultimately interpreted the instructions.ResultsWe found a striking dissociation in participants’ eye movements: the two groups were similarly adept at using lower-level information to immediately constrain their interpretations of the instructions, but only controls showed evidence of fast top-down use of higher-level information. People with schizophrenia, nonetheless, did eventually reach the same interpretations as controls.ConclusionsThese data suggest that language abnormalities in schizophrenia partially result from a failure to use higher-level information in a top-down fashion, to constrain the interpretation of language as it unfolds in real time.