The present studies employed event-related potentials (ERPs) to examine the time course for the integration of lexico-semantic and discourse information during the resolution of categorical anaphors. Scenarios were constructed to include three potential antecedents. Anaphors were semantically ambiguous in that two of the potential antecedents were exemplars of the anaphor. Final sentences resolved the anaphor with the correct (associatively related/contextually appropriate), incorrect (associatively related/contextually inappropriate), or control antecedent (associatively unrelated/contextually inappropriate). We examined the amplitude of the N400 component, which is thought to reflect the ease of semantic integration, at several points following the anaphor. The smallest N400 was evoked when the text referred back to a correct antecedent following an anaphor; an intermediate N400 was evoked by incorrect antecedents and the largest N400 was evoked by reinstating the control antecedent following an anaphor. Results demonstrated that, following an ambiguous anaphor, readers are able to use both lexico-semantic and discourse-level information to semantically integrate an antecedent into its larger discourse context.
- Home
- Discourse Comprehension
Discourse Comprehension
To build up coherence between sentences (comprehend discourse), we must draw inferences, i.e. activate and integrate information that is not actually stated. We used event-related fMRI to determine the localization and extent of brain activity mediating causal inferencing across short, three-sentence scenarios. Participants read and made causal coherence judgments to sentences that were highly causally related, intermediately related or unrelated to their preceding two-sentence contexts. The highly related and intermediately related scenarios were matched in terms of semantic similarities between their individual component words. A pre-rating study established that causal inferences were generated to the intermediately related but not to the highly related or unrelated scenarios. In the scanner, sentences that were intermediately related (relative to highly related or unrelated) to their preceding contexts were associated with longer judgment reaction times and sustained increases in hemodynamic activity within left lateral temporal/inferior parietal/prefrontal cortices, the right inferior prefrontal gyrus and bilateral superior medial prefrontal cortices. In contrast, sentences that were unrelated (relative to highly related) to their preceding contexts were associated with only transient increases in activity (at, but not after, the peak of the hemodynamic response) within the right lateral temporal cortex and the right inferior prefrontal gyrus. These data suggest that, to make sense of discourse, we activate a large bilateral cortical network in response to what is not explicitly stated. We suggest that this network reflects the activation, retrieval and integration of information from long-term semantic memory into incoming discourse structure during causal inferencing.
Impairments in the buildup and use of context may lead to disorders of thought and language in schizophrenia. To test this hypothesis, event-related potentials (ERPs) were measured while patients and healthy controls read sentences that were highly causally related, intermediately related, or unrelated to preceding contexts. Although patients were slower than controls, both groups used the discourse context similarly as evidenced by similar reaction time patterns across conditions. Neurally however, different patterns emerged between patients and controls: within the N400 time window, patients failed to modulate their neural responses across conditions. This failure to differentiate between conditions was specifically correlated with positive thought disorder. Results suggest that schizophrenia patients, particularly those with positive thought disorder, fail to make immediate use of discourse context to build up semantic coherence in the brain.
The present study dissociated the immediate neural costs from the subsequent neural consequences of integrating time shifts into our mental representations of events. Event-related potentials were recorded as participants read scenarios that included words referring to short temporal shifts (e.g., after one second), moderate temporal shifts (e.g., after one hour), or long temporal shifts (e.g., after one year). These words were followed by repeated noun-phrase anaphors, which are preferred as referents for information no longer in attentional focus. The N400 was measured as an index of online conceptual integration. As the discourse unfolded, the N400 was larger for long- (e.g.,year) than for short- (e.g., second) shift words. For the anaphor, the N400 was modulated in the opposite direction. Thus, the introduction of a temporal discontinuity leads to immediate neural integration costs, as well as to decreased accessibility of earlier information.
Although the neurocognitive mechanisms of nonaffective language comprehension have been studied extensively, relatively less is known about how the emotional meaning of language is processed. In this study, electrophysiological responses to affectively positive, negative, and neutral words, presented within nonconstraining, neutral contexts, were evaluated under conditions of explicit evaluation of emotional content (Experiment 1) and passive reading (Experiment 2). In both experiments, a widely distributed Late Positivity was found to be larger to negative than to positive words (a "negativity bias"). In addition, in Experiment 2, a small, posterior N400 effect to negative and positive (relative to neutral) words was detected, with no differences found between N400 magnitudes to negative and positive words. Taken together, these results suggest that comprehending the emotional meaning of words following a neutral context requires an initial semantic analysis that is relatively more engaged for emotional than for nonemotional words, whereas a later, more extended, attention-modulated process distinguishes the specific emotional valence (positive vs. negative) of words. Thus, emotional processing networks within the brain appear to exert a continuous influence, evident at several stages, on the construction of the emotional meaning of language.
Clinically, patients with schizophrenia show prominent abnormalities at the discourse level, with production characterized by tangential and illogical relationships between ideas and unclear references. Despite these clinical manifestations, most studies of language in schizophrenia have focused on semantic relationships between single words and the build-up of meaning within single-clause sentences. The present paper discusses the few studies that have gone beyond clause boundaries to fully understand language impairments in schizophrenia. We also give an overview of a relevant literature that considers the neurocognitive mechanisms by which coherence links are established across clauses in healthy adults, providing a framework that may guide future research in this area.
The present study investigated the contribution of lexico-semantic associations to impairments in establishing reference in schizophrenia. We examined event-related potentials as schizophrenia patients and healthy, demographically matched controls read five-sentence scenarios. Sentence 4 introduced a noun that referred back to three possible referents introduced in Sentences 1-3. These referents were contextually appropriate, contextually inappropriate but lexico-semantically associated, and contextually inappropriate and lexico-semantically nonassociated. In order to determine whether participants had correctly linked the anaphor to its referent, the final sentence reintroduced each referent, and participants indicated whether the last two sentences referred to the same entity. Results indicated that between 300 and 400 ms, patients, like healthy controls, used discourse context to link the noun with its preceding referent. However, between 400 and 500 ms, neural activity in patients was modulated only by lexico-semantic associations, rather than by discourse context. Moreover, patients were also more likely than controls to incorrectly link the noun with contextually inappropriate but lexico-semantically associated referents. These results suggest that at least some types of referential impairments may be driven by sustained activation of contextually inappropriate lexico-semantic associations.
This study examined neural activity associated with establishing causal relationships across sentences during on-line comprehension. ERPs were measured while participants read and judged the relatedness of three-sentence scenarios in which the final sentence was highly causally related, intermediately related, and causally unrelated to its context. Lexico-semantic co-occurrence was matched across the three conditions using a Latent Semantic Analysis. Critical words in causally unrelated scenarios evoked a larger N400 than words in both highly causally related and intermediately related scenarios, regardless of whether they appeared before or at the sentence-final position. At midline sites, the N400 to intermediately related sentence-final words was attenuated to the same degree as to highly causally related words, but otherwise the N400 to intermediately related words fell in between that evoked by highly causally related and intermediately related words. No modulation of the late positivity/P600 component was observed across conditions. These results indicate that both simple and complex causal inferences can influence the earliest stages of semantically processing an incoming word. Further, they suggest that causal coherence, at the situation level, can influence incremental word-by-word discourse comprehension, even when semantic relationships between individual words are matched.
A cardinal feature of schizophrenia is the poor comprehension, or misinterpretation, of the emotional meaning of social interactions and events, which can sometimes take the form of a persecutory delusion. It has been shown that the comprehension of the emotional meaning of the social world involves a midline paralimbic cortical network. However, the function of this network during emotional appraisals in patients with schizophrenia is not well understood. In this study, hemodynamic responses were measured in 14 patients with schizophrenia and 18 healthy subjects during the evaluation of descriptions of social situations with negative, positive, and neutral affective valence. The healthy and schizophrenia groups displayed opposite patterns of responses to emotional and neutral social situations within the medial prefrontal and posterior cingulate cortices—healthy participants showed greater activity to the emotional compared to the neutral situations, while patients exhibited greater responses to the neutral compared to the emotional situations. Moreover, the magnitude of the response within bilateral cingulate gyri to the neutral social stimuli predicted delusion severity in the patients with schizophrenia. These findings suggest that impaired functioning of cortical midline structures in schizophrenia may underlie faulty interpretations of social events, contributing to delusion formation.
Schizophrenia is associated with abnormalities in emotional processing and social cognition. However, it remains unclear whether patients show abnormal neurophysiological responses during fast, online appraisals of the emotional meaning of social information. To examine this question, event-related potentials (ERPs) were collected while 18 schizophrenia patients and 18 demographically matched controls evaluated 2-sentence vignettes describing negative, positive, or neutral social situations. ERPs were time locked to a critical word (CW) in the second sentence that conferred emotional valence. A late positivity effect to emotional (vs neutral) CWs was seen in both groups (in controls, to negative and positive CWs; in patients, to negative CWs only). However, the controls showed a greater late positivity effect to the negative and positive (vs neutral) CWs than the schizophrenia patients at mid-posterior (negative vs neutral) and at right posterior peripheral (positive vs neutral) sites. These between-group differences arose from reduced amplitudes of the late positivity to the negative and positive CWs in the patients relative to the controls; there was no difference between the 2 groups in the amplitude of the late positivity to the neutral CWs. These findings suggest that schizophrenia is associated with a specific neural deficit during the online evaluation of emotionally valent, socially relevant information.
Accurately communicating self-relevant and emotional information is a vital function of language, but we have little idea about how these factors impact normal discourse comprehension. In an event-related potential (ERP) study, we fully crossed self-relevance and emotion in a discourse context. Two-sentence social vignettes were presented either in the third or the second person (previous work has shown that this influences the perspective from which mental models are built). ERPs were time-locked to a critical word toward the end of the second sentence which was pleasant, neutral, or unpleasant (e.g., A man knocks on Sandra’s/your hotel room door. She/You see(s) that he has agift/tray/gunin his hand.). We saw modulation of early components (P1, N1, and P2) by self-relevance, suggesting that a self-relevant context can lead to top-down attentional effects during early stages of visual processing. Unpleasant words evoked a larger late positivity than pleasant words, which evoked a larger positivity than neutral words, indicating that, regardless of self-relevance, emotional words are assessed as motivationally significant, triggering additional or deeper processing at post-lexical stages. Finally, self-relevance and emotion interacted on the late positivity: a larger late positivity was evoked by neutral words in self-relevant, but not in non-self-relevant, contexts. This may reflect prolonged attempts to disambiguate the emotional valence of ambiguous stimuli that are relevant to the self. More broadly, our findings suggest that the assessment of emotion and self-relevance are not independent, but rather that they interactively influence one another during word-by-word language comprehension.
Words that are semantically congruous with their preceding discourse context are easier to process than words that are semantically incongruous with their context. This facilitation of semantic processing is reflected by an attenuation of the N400 event-related potential (ERP). We asked whether this was true of emotional words in emotional contexts where discourse congruity was conferred through emotional valence. ERPs were measured as 24 participants read twosentence scenarios with critical words that varied by emotion (pleasant, unpleasant, or neutral) and congruity (congruous or incongruous). Semantic predictability, constraint, and plausibility were comparable across the neutral and emotional scenarios. As expected, the N400 was smaller to neutral words that were semantically congruous (vs. incongruous) with their neutral discourse context. No such N400 congruity effect was observed on emotional words following emotional discourse contexts. Rather, the amplitude of the N400 was small to all emotional words (pleasant and unpleasant), regardless of whether their emotional valence was congruous with the valence of their emotional discourse context. However, consistent with previous studies, the emotional words produced a larger late positivity than did the neutral words. These data suggest that comprehenders bypassed deep semantic processing of valence-incongruous emotional words within the N400 time window, moving rapidly on to evaluate the words’ motivational significance.
A large body of social psychological research suggests that we think quite positively of ourselves, often unrealistically so. Research on this ’self-positivity bias’ has relied mainly on self-report and behavioral measures, but these can suffer from a number of problems including confounds that arise from the desire to present oneself well. What has not been clearly assessed is whether the self-positivity bias influences the processing of incoming information as it unfolds in real time. In this study, we used event-related potentials to address this question. Participants read two-sentence social vignettes that were either self- or other-relevant. Pleasant words in self-relevant contexts evoked a smaller negativity between 300 and 500 ms (the N400 time window) than the same words in other-relevant contexts, suggesting that comprehenders were more likely to expect positive information when a scenario referred to themselves. This finding indicates that the self-positivity bias is available online, acting as a general schema that directly influences real-time comprehension.
In two event-related potential experiments, we asked whether comprehenders used the concessive connective, even so, to predict upcoming events. Participants read coherent and incoherent scenarios, with and without even so, e.g. ‘Elizabeth had a history exam on Monday. She took the test and aced/failed it. (Even so), she went home and celebrated wildly’, as they rated coherence (Experiment 1) or simply answered intermittent comprehension questions (Experiment 2). The semantic function of even so was used to reverse real-world knowledge predictions, leading to an attenuated N400 to coherent versus incoherent target words (‘celebrated’). Moreover, its pragmatic communicative function enhanced predictive processing, leading to more N400 attenuation to coherent targets in scenarios with than without even so. This benefit however, did not come for free: the detection of failed event predictions triggered a later posterior positivity and/or an anterior negativity effect, and
We used event-related potentials (ERPs) to examine the interactions between task, emotion, and contextual self-relevance on processing words in social vignettes. Participants read scenarios that were in either third person (other-relevant) or second person (self-relevant) and we recorded ERPs to a neutral, pleasant, or unpleasant critical word. In a previously reported study (Fields and Kuperberg, 2012) with these stimuli, participants were tasked with producing a third sentence continuing the scenario. We observed a larger LPC to emotional words than neutral words in both the self-relevant and other-relevant scenarios, but this effect was smaller in the self-relevant scenarios because the LPC was larger on the neutral words (i.e., a larger LPC to self-relevant than other-relevant neutral words). In the present work, participants simply answered comprehension questions that did not refer to the emotional aspects of the scenario. Here we observed quite a different pattern of interaction between self-relevance and emotion: the LPC was larger to emotional vs. neutral words in the self-relevant scenarios only, and there was no effect of self-relevance on neutral words. Taken together, these findings suggest that the LPC reflects a dynamic interaction between specific task demands, the emotional properties of a stimulus, and contextual self-relevance. We conclude by discussing implications and future directions for a functional theory of the emotional LPC.
Background: Schizophrenia is characterized by abnormalities in referential communication, which may be linked to more general deficits in proactive cognitive control. We used event-related potentials (ERPs) to probe the timing and nature of the neural mechanisms engaged as people with schizophrenia linked pronouns to their preceding referents during word-by-word sentence comprehension.Methods: We measured ERPs to pronouns in two-clause sentences from 16 people with schizophrenia and 20 demographically-matched control participants. Our design crossed the number of potential referents (1-referent, 2-referent) with whether the pronoun matched the gender of its preceding referent(s) (matching, mismatching). This gave rise to four conditions: (1) 1-referent matching (“…Edward took courses in accounting but he…”), (2) 2-referent matching (“…Edward and Phillip took courses but he…”), (3) 1-referent mismatching (“…Edward took courses in accounting but she…”), and (4) 2-referent mismatching (“…Edward and Phillip took courses but she…”).Results: Consistent with previous findings, healthy controls produced a larger left anteriorly-distributed negativity between 400-600ms to 2-referent matching than to 1-referent matching pronouns (the “Nref effect”). In contrast, people with schizophrenia produced a larger centro-posterior positivity effect between 600-800ms. Both patient and control groups produced a larger positivity between 400-800ms to mismatching than to matching pronouns.Conclusions: These findings suggest that proactive mechanisms of referential processing, reflected by the Nref effect, are impaired in schizophrenia, while reactive mechanisms, reflected by the positivity effects, are relatively spared. Indeed, patients may compensate for proactive deficits by retro-actively engaging with context to influence the processing of inputs at a later stage of analysis.
BackgroundPeople with schizophrenia process language in unusual ways, but the causes of these abnormalities are unclear. In particular, it has proven difficult to empirically disentangle explanations based on impairments in the top-down processing of higher-level information from those based on the bottom-up processing of lower-level information.MethodsTo distinguish these accounts, we used visual world eye-tracking, a paradigm that measures spoken language processing during real-world interactions. Participants listened to and then acted out syntactically ambiguous spoken instructions (e.g., “tickle the frog with the feather”, which could either specify how to tickle a frog, or which frog to tickle). We contrasted how 24 people with schizophrenia and 24 demographically-matched controls used two types of lower-level information (prosody and lexical representations) and two types of higher-level information (pragmatic and discourse-level representations) to resolve the ambiguous meanings of these instructions. Eye-tracking allowed us to assess how participants arrived at their interpretation in real time, while recordings of participants’ actions measured how they ultimately interpreted the instructions.ResultsWe found a striking dissociation in participants’ eye movements: the two groups were similarly adept at using lower-level information to immediately constrain their interpretations of the instructions, but only controls showed evidence of fast top-down use of higher-level information. People with schizophrenia, nonetheless, did eventually reach the same interpretations as controls.ConclusionsThese data suggest that language abnormalities in schizophrenia partially result from a failure to use higher-level information in a top-down fashion, to constrain the interpretation of language as it unfolds in real time.
A large literature in social neuroscience has associated the medial prefrontal cortex (mPFC) with the processing of self-related information. However, only recently have social neuroscience studies begun to consider the large behavioral literature showing a strong self-positivity bias, and these studies have mostly focused on its correlates during self-related judgments and decision making. We carried out a functional MRI (fMRI) study to ask whether the mPFC would show effects of the self-positivity bias in a paradigm that probed participants’ self-concept without any requirement of explicit self-judgment. We presented social vignettes that were either self-relevant or non-self-relevant with a neutral, positive, or negative outcome described in the second sentence. In previous work using event-related potentials, this paradigm has shown evidence of a self-positivity bias that influences early stages of semantically processing incoming stimuli. In the present fMRI study, we found evidence for this bias within the mPFC: an interaction between self-relevance and valence, with only positive scenarios showing a self vs other effect within the mPFC. We suggest that the mPFC may play a role in maintaining a positively-biased self-concept and discuss the implications of these findings for the social neuroscience of the self and the role of the mPFC.
During language comprehension, online neural processing is strongly influenced by the constraints of the prior context. While the N400 ERP response (300-500ms) is known to be sensitive to a word’s semantic predictability, less is known about a set of late positive-going ERP responses (600-1000ms) that can be elicited when an incoming word violates strong predictions about upcoming content (late frontal positivity) or about what is possible given the prior context (late posterior positivity/P600). Across three experiments, we systematically manipulated the length of the prior context and the source of lexical constraint to determine their influence on comprehenders’ online neural responses to these two types of prediction violations. In Experiment 1, within minimal contexts, both lexical prediction violations and semantically anomalous words produced a larger N400 than expected continuations (James unlocked the door/laptop/gardener), but no late positive effects were observed. Critically, the late posterior positivity/P600 to semantic anomalies appeared when these same sentences were embedded within longer discourse contexts (Experiment 2a), and the late frontal positivity appeared to lexical prediction violations when the preceding context was rich and globally constraining (Experiment 2b). We interpret these findings within a hierarchical generative framework of language comprehension. This framework highlights the role of comprehension goals and broader linguistic context, and how these factors influence both top-down prediction and the decision to update or reanalyze the prior context when these predictions are violated.