This study examined how task (implicit vs. explicit) and semantic relationship (direct vs. indirect) modulated hemodynamic activity during lexico-semantic processing. Participants viewed directly related, indirectly related, and unrelated prime-target word-pairs as they performed (a) an implicit lexical decision (LD) task in which they decided whether each target was a real word or a nonword, and (b) an explicit relatedness judgment (RJ) task in which they determined whether each word-pair was related or unrelated in meaning. Task influenced both the polarity and neuroanatomical localization of hemodynamic modulation. Semantic relationship influenced the neuroanatomical localization of hemodynamic modulation. The implicit LD task was primarily associated with inferior prefrontal and ventral inferior temporal/fusiform hemodynamic response suppression to directly related (relative to unrelated) word-pairs, and with more widespread temporal-occipital response suppression to indirectly related (relative to unrelated) word-pairs. In contrast, the explicit RJ task was primarily associated with left inferior parietal hemodynamic response enhancement to both directly and indirectly related (relative to unrelated) word-pairs, as well as with additional left inferior prefrontal hemodynamic response enhancement to indirectly related (relative to unrelated) word-pairs. These findings are discussed in relation to the specific neurocognitive processes thought to underlie implicit and explicit semantic processes. Hum Brain Mapp, 2008. (c) 2007 Wiley-Liss, Inc.
Semantic Priming
2008
It has been proposed that the loose associations characteristic of thought disorder in schizophrenia result from an abnormal increase in the automatic spread of activation through semantic memory. We tested this hypothesis by examining the time course of neural semantic priming using event-related potentials (ERPs). ERPs were recorded to target words that were directly related, indirectly related, and unrelated to their preceding primes, while thought-disordered (TD) and non-TD schizophrenia patients and healthy controls performed an implicit semantic categorization task under experimental conditions that encouraged automatic processing. By 300-400 milliseconds after target word onset, TD patients showed increased indirect semantic priming relative to non-TD patients and healthy controls, while the degree of direct semantic priming was increased in only the most severely TD patients. By 400-500 milliseconds after target word onset, both direct and indirect semantic priming were generally equivalent across the 3 groups. These findings demonstrate for the first time at a neural level that, under automatic conditions, activation across the semantic network spreads further within a shorter period of time in specific association with positive thought disorder in schizophrenia.
2007
CONTEXT: Loosening of associations has long been considered a core feature of schizophrenia, but its neural correlate remains poorly understood. OBJECTIVE: To test the hypothesis that, in comparison with healthy control subjects, patients with schizophrenia show increased neural activity within inferior prefrontal and temporal cortices in response to directly and indirectly semantically related (relative to unrelated) words. DESIGN: A functional neuroimaging study using a semantic priming paradigm. SETTING: Lindemann Mental Health Center, Boston, Mass. PARTICIPANTS: Seventeen right-handed medicated outpatients with chronic schizophrenia and 15 healthy volunteers, matched for age and parental socioeconomic status. INTERVENTIONS: Functional magnetic resonance imaging as participants viewed directly related, indirectly related, and unrelated word pairs and performed a lexical decision task. MAIN OUTCOME MEASURES: Event-related functional magnetic resonance imaging measures of blood oxygenation level-dependent activity (1) within a priori temporal and prefrontal anatomic regions of interest and (2) at all voxels across the cortex. RESULTS: Patients and controls showed no behavioral differences in priming but opposite patterns of hemodynamic modulation in response to directly related (relative to unrelated) word pairs primarily within inferior prefrontal cortices, and to indirectly related (relative to unrelated) word pairs primarily within temporal cortices. Whereas controls showed the expected decreases in activity in response to semantic relationships (hemodynamic response suppression), patients showed inappropriate increases in response to semantic relationships (hemodynamic response enhancement) in many of the same regions. Moreover, hemodynamic response enhancement within the temporal fusiform cortices to indirectly related (relative to unrelated) word pairs predicted positive thought disorder. CONCLUSION: Medicated patients with chronic schizophrenia, particularly those with positive thought disorder, show inappropriate increases in activity within inferior prefrontal and temporal cortices in response to semantic associations.
2006
In two experiments, direct and indirect semantic priming were measured using event-related potentials. In Experiment 1, participants rated the relatedness between prime and target on a seven-point scale. In Experiment 2, participants simply read the primes and targets as they monitored for a semantic category in probe filler items. Significant direct and indirect N400 priming effects were observed in both experiments. In Experiment 1, the indirect N400 priming effect remained significant when indirectly related and unrelated word pairs were matched for participants’ explicit relatedness judgments. In both experiments, the indirect N400 priming effects were preserved when indirectly related and unrelated word pairs were matched on more global and objective measures of semantic similarity. These findings are discussed in the context of current theoretical models of semantic memory and semantic priming.
Despite decades of research, it remains controversial whether semantic knowledge is anatomically segregated in the human brain. To address this question, we recorded event-related potentials (ERPs) while participants viewed pictures of animals and tools. Within the 200-600-ms epoch after stimulus presentation, animals (relative to tools) elicited an increased anterior negativity that, based on previous ERP studies, we interpret as associated with semantic processing of visual object attributes. In contrast, tools (relative to animals) evoked an enhanced posterior left-lateralized negativity that, according to prior research, might reflect accessing knowledge of characteristic motion and/or more general functional properties of objects. These results support the hypothesis of the neuroanatomical knowledge organization at the level of object features: the observed neurophysiological activity was modulated by the features that were most salient for object recognition. The high temporal resolution of ERPs allowed us to demonstrate that differences in processing animals and tools occurred specifically within the time-window encompassing semantic analysis.