Papers
In Press
2024
We used MEG and EEG to examine the effects of Plausibility (anomalous vs. plausible) and Animacy (animate vs. inanimate) on activity to incoming words during language comprehension. We conducted univariate event-related and multivariate spatial similarity analyses on both datasets. The univariate and multivariate results converged in their time course and sensitivity to Plausibility. However, only the spatial similarity analyses detected effects of Animacy. The MEG and EEG findings largely converged between 300–500 ms, but diverged in their univariate and multivariate responses to anomalies between 600–1000 ms. We interpret the full set of results within a predictive coding framework. In addition to the theoretical significance, we discuss the methodological implications of the convergence and divergence between the univariate and multivariate results, as well as between the MEG and EEG results. We argue that a deeper understanding of language processing can be achieved by integrating different analysis approaches and techniques.
During language comprehension, the processing of each incoming word is facilitated in proportion to its predictability. Here, we asked whether anticipated upcoming linguistic information is actually pre-activated before new bottom-up input becomes available, and if so, whether this pre-activation is limited to the level of semantic features, or whether extends to representations of individual word-forms (orthography/phonology). We carried out Representational Similarity Analysis on EEG data while participants read highly constraining sentences. Prior to the onset of the expected target words, sentence pairs predicting semantically-related words (financial “bank” – “loan”) and form-related words (financial “bank” – river “bank”) produced more similar neural patterns than pairs predicting unrelated words (“bank” – “lesson”). This provides direct neural evidence for item-specific semantic and form predictive pre-activation. Moreover, the semantic pre-activation effect preceded the form pre-activation effect, suggesting that top-down pre-activation is propagated from higher to lower levels of the linguistic hierarchy over time.
2023
To comprehend language, we continually use prior context to pre-activate expected upcoming information, resulting in facilitated processing of incoming words that confirm these predictions. But what are the consequences of disconfirming prior predictions? To address this question, most previous studies have examined unpredictable words appearing in contexts that constrain strongly for a single continuation. However, during natural language processing, it is far more common to encounter contexts that constrain for multiple potential continuations, each with some probability. Here, we ask whether and how pre-activating both higher and lower probability alternatives influences the processing of the lower probability incoming word. One possibility is that, similar to language production, there is continuous pressure to select the higher-probability pre-activated alternative through competitive inhibition. During comprehension, this would result in relative costs in processing the lower probability target. A second possibility is that if the two pre-activated alternatives share semantic features, they mutually enhance each other’s pre-activation. This would result in greater facilitation in processing the lower probability target. To distinguish between these accounts, we recorded ERPs as participants read three-sentence scenarios that constrained either for a single word or for two potential continuations – a higher probability expected candidate and a lower probability second-best candidate. We found no evidence that competitive pre-activation between the expected and second-best candidates resulted in costs in processing the second-best target, either during lexico-semantic processing (indexed by the N400) or at later stages of processing (indexed by a later frontal positivity). Instead, we found only benefits of pre-activating multiple alternatives, with evidence of enhanced graded facilitation on lower-probability targets that were semantically related to a higher-probability pre-activated alternative. These findings are consistent with a previous eye-tracking study by Luke and Christianson (2016, Cogn Psychol) using corpus-based materials. They have significant theoretical implications for models of predictive language processing, indicating that routine graded prediction in language comprehension does not operate through the same competitive mechanisms that are engaged in language production. Instead, our results align more closely with hierarchical probabilistic accounts of language comprehension, such as predictive coding.
2022
In people with schizophrenia and related disorders, impairments in communication and social functioning can negatively impact social interactions and quality of life. In the present study, we investigated the cognitive basis of a specific aspect of linguistic communication—lexical alignment— in people with schizophrenia and bipolar disorder. We probed lexical alignment as participants played a collaborative picture-naming game with the experimenter, in which the two players alternated between naming a dual-name picture (e.g., rabbit/bunny) and listening to their partner name a picture. We found evidence of lexical alignment in all three groups, with no differences between the patient groups and the controls. We argue that these typical patterns of lexical alignment in patients were supported by preserved—and in some cases increased—bottom-up mechanisms, which balanced out impairments in top-down perspective-taking.
We used magnetoencephalography (MEG) and event-related potentials (ERPs) to track the time-course and localization of evoked activity produced by expected, unexpected plausible, and implausible words during incremental language comprehension. We suggest that the full pattern of results can be explained within a hierarchical predictive coding framework in which increased evoked activity reflects the activation of residual information that was not already represented at a given level of the fronto-temporal hierarchy (“error” activity). Between 300 and 500 ms, the three conditions produced progressively larger responses within left temporal cortex (lexico-semantic prediction error), whereas implausible inputs produced a selectively enhanced response within inferior frontal cortex (prediction error at the level of the event model). Between 600 and 1,000 ms, unexpected plausible words activated left inferior frontal and middle temporal cortices (feedback activity that produced top-down error), whereas highly implausible inputs activated left inferior frontal cortex, posterior fusiform (unsuppressed orthographic prediction error/reprocessing), and medial temporal cortex (possibly supporting new learning). Therefore, predictive coding may provide a unifying theory that links language comprehension to other domains of cognition.
There is an ongoing controversy over whether readers can access the meaning of multiple words, simultaneously. To date, different experimental methods have generated seemingly contradictory evidence in support of serial or parallel processing accounts. For example, dual-task studies suggest that readers can process a maximum of one word at a time (White, Palmer & Boynton, 2018), while ERP studies have demonstrated neural priming effects that are more consistent with parallel activation (Wen, Snell & Grainger, 2019). To help reconcile these views, I measured neural responses and behavioral accuracy in a dual-task sentence comprehension paradigm. Participants saw masked sentences and two-word phrases and had to judge whether or not they were grammatical. Grammatically correct sentences (This girl is neat) produced smaller N400 responses compared to scrambled sentences (Those girl is fled): an N400 sentence superiority effect. Critically, participants’ grammaticality judgements on the same trials showed striking capacity limitations, with dual-task deficits closely matching the predictions of a serial, all-or-none processing account. Together, these findings suggest that the N400 sentence superiority effect is fully compatible with serial word recognition, and that readers are unable to process multiple sentence positions simultaneously.
The N400 event-related brain potential is elicited by each word in a sentence and offers an important window into the mechanisms of real-time language comprehension. Since the 1980s, studies investigating the N400 have expanded our understanding of how bottom-up linguistic inputs interact with top-down contextual constraints. More recently, a growing body of computational modeling research has aimed to formalize theoretical accounts of the N400 to better understand the neural and functional basis of this component. Here, we provide a comprehensive review of this literature. We discuss “word-level” models that focus on the N400’s sensitivity to lexical factors and simple priming manipulations, as well as more recent sentence-level models that explain its sensitivity to broader context. We discuss each model’s insights and limitations in relation to a set of cognitive and biological constraints that have informed our understanding of language comprehension and the N400 over the past few decades. We then review a novel computational model of the N400 that is based on the principles of predictive coding, which can accurately simulate both word-level and sentence-level phenomena. In this predictive coding account, the N400 is conceptualized as the magnitude of lexico-semantic prediction error produced by incoming words during the process of inferring their meaning. Finally, we highlight important directions for future research, including a discussion of how these computational models can be expanded to explain language-related ERP effects outside the N400 time window, and variation in N400 modulation across different populations.
2021
To make sense of the world around us, we must be able to segment a continual stream of sensory inputs into discrete events. In this review, I propose that in order to comprehend events, we engage hierarchical generative models that “reverse engineer” the intentions of other agents as they produce sequential action in real time. By generating probabilistic predictions for upcoming events, generative models ensure that we are able to keep up with the rapid pace at which perceptual inputs unfold. By tracking our certainty about other agents’ goals and the magnitude of prediction errors at multiple temporal scales, generative models enable us to detect event boundaries by inferring when a goal has changed. Moreover, by adapting flexibly to the broader dynamics of the environment and our own comprehension goals, generative models allow us to optimally allocate limited resources. Finally, I argue that we use generative models not only to comprehend events but also to produce events (carry out goal-relevant sequential action) and to continually learn about new events from our surroundings. Taken together, this hierarchical generative framework provides new insights into how the human brain processes events so effortlessly while highlighting the fundamental links between event comprehension, production, and learning.